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Introduction  to  Python

This  IPython  notebook  provides  an  introduction  into  some  of  the  basics  of  python  and  the  coding  idioms

of  Python.  We  will  start  by  reviewing  the  different  types  of  data  that  can  be  stored  in  Python  and  proceed

to  other  topics  from  there.  While  you  work  through  this  notebook  it  would  be  wise  to  either  be  playing  with

the  code  in  the  notebook  itself  or  in  a  ipython  console  that  you  open  on  your  own.  I  will  provide  some

comments  intended  for  the  reader  that  are  denoted  by  a  #  in  Python.  Remember  that  while  you  are

learning  Python  and  even  once  you  master  Python  that  Google  will  be  your  best  friend.  If  you  ever  have

a  question  about  how  to  do  something  then  you  will  almost  certainly  be  able  to  find  an  answer  online.

Following  the  information  in  this  notebook,  there  will  be  several  problems  that  you  will  be  asked  to  turn  in.

Types  of  Data  in  Python

This  section  will  introduce  you  to  several  different  types  of  data  that  you  will  frequently  use  in  Python.  We

will  touch  on  strings,  integers,  floats,  and  lists  (Note:  There  are  complex  numbers  as  well,  but  they  are

very  similar  to  floats  and  I  also  suggest  learning  a  little  about  sets  and  dictionaries).  Each  of  these  will

have  different  uses  and  you  will  need  them  to  complete  future  labs.  As  a  note  prior  to  beginning.  In

python,  x  =  _  ,  denotes  x  as  whatever  fills  in  the  blank  space  after  the  equal  sign.  This  is  known  as  being
an  identifier.  You  can  use  whatever  variable/word  you  want  with  the  exeception  of  beginning  your

identifier  with  a  number  and  for  several  words  that  python  has  claimed  for  itself  (and,  del,  from,  not,  while,

as,  elif,  global,  or,  with,  assert,  else,  if,  pass,  break,  except,  import,  print,  class,  exec,  in,  raise,  continue,

finally,  is,  return,  def,  for,  lambda,  try).  Below  we  define  num  as  an  identifier  for  the  object  1.  Notice  when

we  tell  python  to  print  the  identifier  num  that  it  returns  1.  Another  important  to  note  is  that  python  begins

indexing  at  element  0.  If  you  want  the  first  element  from  a  list  or  string  then  it  will  be  denoted  as  the  0th

element.

In  [23]:

In  [24]:

Strings

Strings  are  a  list  of  characters(includes  numbers  and  symbols)  in  a  certain  order.  These  are  declared  in

python  by  using  quotation  marks  (',  ",  or  """).  Notice  below  that  when  we  ask  python  to  print  what  type

'hello'  is  that  it  returns  type  str.  This  is  letting  us  know  that  'hello'  is  a  string.

num  =  1
print(num)    #  This  will  return  what  num  is  tied  to  (1)

1

testlist  =  [0,  1,  2,  3,  4]
print(testlist[0])    #  Notice  this  gives  us  the  first  element  of  testlist.

0
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In  [3]:

There  are  several  operations  that  can  be  done  to  strings.  Typically  strings  are  useful  for  printing  updates

or  information  from  the  code,  but  they  can  be  used  for  other  things  as  well  (such  as  creating  urls  to  direct

python  to).  For  example,  when  printing,  you  can  print  multiple  lines  within  one  print  statement  by  using  \n.

You  can  also  concatenate(add).  Look  at  the  difference  between  the  examples  below.

In  [27]:

In  [29]:

We  can  also  slice(pull  specific  elements  from)  strings.  Look  at  the  examples  below  (The  %s  is  a  place

holder  for  what  comes  after  %)  :

In  [36]:

We  can  also  access  a  range  of  elements  from  strings  in  the  following  way.

In  [39]:

Now  see  what  the  command  [::-1]  does  after  the  string.

In  [41]:

print(type('hello'))
'hello'

<type  'str'>

Out[3]: 'hello'

str1  =  'welcome'
str2  =  'to'
str3  =  'bootcamp'
print(str1  +  str2  +  str3)    #  Here  we  just  print  the  strings  concatenated  together

welcometobootcamp

print(str1  +  '  \n'+str2  +  '  \n'+str3)#  Here  we  concatenate&printthe  strings  and  add  \n

welcome  
to  
bootcamp

practicestr  =  'abcdefghi'
print('first  element  of  practicestr  is  "%s"'  %  practicestr[0])

first  element  of  practicestr  is  "a"

pracstr  =  'abcdefghi'
print(pracstr[0:])    #  The  :  means  everything  afterwards.    This  will  print  whole  string.
print(pracstr[5:])    #  This  will  print  from  element  5  on

abcdefghi
fghi

pracstr  =  'abcdefghi'
#  Write  your  practice  command  here
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There  are  other  things  that  you  can  do  with  strings,  but  this  should  suffice  for  now.  A  couple  of  the  other

cool  things  are  included  below  (The  actual  command  is  after  the  %).  If  you  want  more  instruction  on  any

of  these,  ask  questions.

In  [73]:

Integers  and  Floats

Integers  are  exactly  what  they  sound  like.  Integers  are  all  positive  and  negative  integers;;  for  you  math

folk  it  is   .  Floats  are  all  of  the  real  numbers,   .  It  is  important  to  note  the  difference  in  programming

between  integers  and  floats  because  their  operations  will  do  different  things.  To  declare  a  number  as  a

float,  you  either  need  to  tell  the  computer  it  is  a  float  via  command  or  add  a  decimal  place.  See  below:

In  [46]:

In  [45]:

In  [47]:

In  [63]:

In  [64]:

string  =  'thisisasentencestring'
capitallets  =  'ABCDEFGH'
print('number  of  a\'s  in  string  =  %s')  %string.count('a')
print('string  in  all  upper  case  is  %s')  %string.upper()
print('capitallets  in  all  lower  case  is  %s')  %capitallets.lower()
print('replace  D  in  capitallets  with  another  A  is  %s')  %capitallets.replace
print('a  is  in  the  %s  element  of  string')  %string.find
  

number  of  a's  in  string  =  1
string  in  all  upper  case  is  THISISASENTENCESTRING
capitallets  in  all  lower  case  is  abcdefgh
replace  D  in  capitallets  with  another  A  is  ABCAEFGH

type(1)    #  Just  a  normal  integer  will  be  recorded  as  an  integer

Out[46]: int

type(1.0)    #  Just  adding  a  decimal  place  is  the  easiest  way  to  declare  a  float

Out[45]: float

type(float(1))    #  but  you  can  tell  python  that  something  is  a  float.

Out[47]: float

print(int(5.5))

5

print(float(5))

5.0
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I  told  you  that  they  were  going  to  be  a  little  different  so  let  me  show  you  the  difference.  We  obviously

know  that  2/4  should  be  equal  to  .5,  but  lets  see  what  happens  when  we  try  it  with  integers.

In  [48]:

Integer  division  gave  us  0  for  2/4.  This  is  the  wrong  answer.  The  explanation  is  actually  pretty  simple.

The  division  algorithm  says:  

Note  that  r  is  actually  the  remainder.  Integer  division  simply  returns  the  q  from  this  equation.

Now  if  we  do  this  division  in  floats,  we  will  get  the  answer  that  we  are  looking  for.

In  [49]:

Integer  operations  certainly  have  their  place,  but  typically  you  will  want  to  be  using  float  division.  If  at

least  one  of  the  numbers  is  a  float  then  the  output  will  be  returned  as  a  float.  There  is  also  a  small  cheat

you  can  put  at  the  beginning  of  your  file  that  will  declare  all  of  your  division  as  float  division  for  your

whole  script.  That  cheat  is  to  write  from  __future__  import  division  at  the  beginning  of  your  script.  That

will  make  all  division  float  division.

In  [54]:

The  rest  of  the  operations  should  work  pretty  similarly  between  the  two,  but  it  is  always  better  to  be  safe

and  work  with  floats  if  you  want  to  be  in  the  real  numbers.  Another  operation  that  tends  to  be  very  useful

is  modulus.  You  do  modulus  with  %.  The  modulus  will  return  the  r  from  the  division  algorithm.  This  will  be

useful  in  many  instances.  For  example,  if  you  need  to  know  whether  a  number  is  even  or  odd  then  you

can  check  the  number  modulus  2.

In  [57]:

In  [58]:

In  [59]:

2/4

Out[48]: 0

2.0/4.0

Out[49]: 0.5

from  __future__  import  division
4/3

Out[54]: 1.3333333333333333

4%2    #  gives  us  0  so  2  must  divide  evenly  into  4

Out[57]: 0

5%2    #  gives  us  1  so  2  doesn't  divide  evenly  into  5

Out[58]: 1

1436213623%2    #  gives  us  1  so  2  doesn't  divide  evenly  into  that  number
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In  many  programming  languages  the  exponent  is  denoted  as   ,̂  but  this  is  not  true  in  python.  If  you  want

to  take  something  to  a  power  then  you  need  to  use  **.  See  below:

In  [60]:

In  [61]:

Lists

Lists  are  extremely  useful  for  keeping  track  of  information.  A  list  can  contain  floats,  integers,  strings  or

any  combination  of  them.  A  list  is  declared  by  using  the  square  brackets,  [].  You  can  append/remove  new

items  to/from  a  list.

In  [90]:

In  [91]:

In  [92]:

You  can  also  replace  elements  within  a  list.

In  [95]:

In  [97]:

Out[59]: 1

3**2

Out[60]: 9

11**4

Out[61]: 14641

practicelist  =  [1,  2,  3,  4]
practicelist

Out[90]: [1,  2,  3,  4]

practicelist.append(5)    #  append  5  to  our  list
practicelist

Out[91]: [1,  2,  3,  4,  5]

practicelist.remove(1)    #  remove  1  from  our  list
practicelist

Out[92]: [2,  3,  4,  5]

anotherlist  =  ['a',  2,  3,  4]
print('this  is  the  first  element  of  another  list',  anotherlist[0])

('this  is  the  first  element  of  another  list',  'a')

anotherlist[0]  =  1
print('now  this  is  the  first  element  of  another  list',  anotherlist[0])

('now  this  is  the  first  element  of  another  list',  1)
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Taking  slices  of  lists  works  the  same  way  as  taking  slices  of  strings.

In  [99]:

We  can  also  concatenate  lists  just  like  we  did  with  strings.

In  [93]:

In  addition  to  being  able  to  do  these  things  that  you  were  able  to  do  in  a  string,  lists  allow  you  to  find  the

max  and  min  (among  other  things)  within  the  list.

In  [108]:

One  of  the  built  in  commands  to  build  lists  is  with  the  range  command.  Below  we  will  build  a  list  of

numbers  from  0  to  9  using  range  in  several  different  ways.

In  [100]:

In  [101]:

In  [102]:

Conditionals,  Loops,  and  Booleans

('now  this  is  the  first  element  of  another  list',  1)

list1  =  [1,  2,  3,  4,  5,  6,  7]
list1[2:5]    #  take  elements  2  through  5

Out[99]: [3,  4,  5]

list1  =  [1,  2]
list2  =  ['a',  'b']
list1  +  list2

Out[93]: [1,  2,  'a',  'b']

list1  =  [1,  2,  36,  256,  2562,  56]
print('The  max  is  %s'  %max(list1))
print('The  min  is  %s'  %min(list1))

The  max  is  2562
The  min  is  1

range(10)    #  if  you  just  input  an  integer  it  will  build  up  until  that  number

Out[100]: [0,  1,  2,  3,  4,  5,  6,  7,  8,  9]

range(0,10,1)    #  you  can  tell  it  to  start  at  0  and  go  to  10  taking  1  unit  steps

Out[101]: [0,  1,  2,  3,  4,  5,  6,  7,  8,  9]

range(1,10)    #  we  can  go  from  1  to  9  as  well  by  specifying  to  start  at  1

Out[102]: [1,  2,  3,  4,  5,  6,  7,  8,  9]
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Conditional  statements,  loops,  and  booleans  permit  a  programmer  increased  flexibility.  These  permit  you

to  give  your  computer  specific  commands  that  save  you  a  lot  of  coding.  For  example,  if  you  want  to

remove  all  of  the  even  numbers  from  a  list  then  you  can  say  something  like  below:

Also  some  symbols  that  will  be  useful:  <  less  than

greater  than  <=  less  than  or  equal  =  greater  than  or  equal  !=  not  equal  ==  equal  to

In  [113]:

In  [112]:

Booleans  are  just  values  tied  to  certain  expressions  that  evaluate  to  either  true  or  false.  If  and  while

statements  are  evaluated  based  on  these  values.  For  example,  below  we  said  5  <  3  and  the  computer

says  False  because  that  isn't  true

In  [117]:

The  conditional  statements  that  you  should  be  most  familiar  with  are  "if/elif/else"  and  "while".  They  are

used  exactly  how  you  would  imagine  that  they  are  used.  You  want  to  tell  the  computer  if  something  is  true

then  do  this,  else  do  this  other  thing.  You  could  also  tell  your  computer  while  this  condition  is  true  then

continue  doing  what  I  told  you  to  do.  Below  are  two  examples  (Note  where  the  indentations  (done  by

inserting  4  spaces)  are):

In  [118]:

In  [115]:

list1  =  range(25)
print(list1)

[0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  19,  
20,  21,  22,  23,  24]

list2  =  [list1[n]  for  n  in  list1  if  n%2!=0]    #  This  removes  all  even  numbers
print(list2)

[1,  3,  5,  7,  9,  11,  13,  15,  17,  19,  21,  23]

5  <  3

Out[117]: False

x  =  3
if  x  <  3:
        print('x  is  less  than  3')
elif  x  <  4:
        print('x  is  less  than  4')
else:
        print('x  is  not  less  than  4')
x  is  less  than  4

x  =  1
while  x  <  7:
        print('x  is  still  less  than  7')
        x  =  x  +  1    #  Increase  x  by  1

x  is  still  less  than  7
x  is  still  less  than  7
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For  conditional  statements,  if  you  are  asking  whether  something  is  equal  you  need  to  use  two  =.  This  is

because  python  thinks  one  =  means  that  you  are  setting  something  equal  to  that,  but  you  are  asking

whether  it  is  or  isn't.  See  example:

In  [124]:

Looping  is  a  very  similar  to  a  while  loop,  but  you  give  it  a  specific  number  of  times  it  should  do  something.

For  example  if  we  had  a  list  and  we  wanted  to  square  every  element,  we  could  use  a  for  loop.

In  [121]:

Developing  a  Function  and  Exploring  Modules

Python  Modules

One  of  the  biggest  benefits  of  python  is  the  fact  that  it  is  open  source.  This  means  that  there  are  almost

constanly  individuals  contributing  to  python  to  build  modules.  Modules  are  just  files  that  contain  python

code  that  you  are  able  to  use.  Some  of  the  modules  that  you  will  use  very  frequently  are:  math,  numpy,

pandas,  byumcl,  and  other  modules  you  might  write  for  yourself.  Although  you  will  use  these  most,  if  you

ever  think  that  something  would  be  nice  to  be  able  to  do  then  most  likely  someone  has  written  a  module

that  does  that  task.  Once  again,  google  will  be  your  best  friend  in  finding  these.

You  need  to  import  modules  into  your  session  to  be  able  to  use  them.  You  need  to  do  all  of  your  imports

at  the  very  beginning  when  you  are  writing  a  script.  These  imports  are  done  like  this:

In  [106]:

x  is  still  less  than  7
x  is  still  less  than  7
x  is  still  less  than  7
x  is  still  less  than  7

x  =  6
if  x  ==  6:
        print('told  ya  so  :)')

told  ya  so  :)

list1  =  [1,  2,  3,  4,  5,  6]
  
for  i  in  range(len(list1)):    #  len(list1)  tells  us  how  many  elements  we  need  to  loop  on
        list1[i]  =  list1[i]**2    #  The  ith  element  of  list1  =  (ith  element  of  list1)  ^2
  
print('list1  squared  is  %s'  %list1)

list1  squared  is  [1,  4,  9,  16,  25,  36]

import  numpy  as  np    #  the  'as  np'  part  creates  a  nickname  for  functions  from  this  module
import  math
import  os
from  filename  import  *    #  will  import  functions  that  you  have  written  in  another  script
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You  have  to  refer  to  the  module  you  just  imported  in  order  to  call  an  object  from  that  module.  For

example:  We  wrote  math.pi  in  the  code  above.  This  tells  python  to  look  in  the  math  module  and  call  the

function  pi.  When  we  write  things  like  the  "import  numpy  as  np",  we  are  giving  numpy  a  nickname  and  we

can  write  np.numpy_function  instead  of  writing  numpy.numpy_function.  It  is  also  helpful  to  try

help(module)  to  see  if  you  can  find  documentation.  You  can  also  use  module.object(??  to  open  the

documentation  for  a  specific  object  in  a  module.

Defining  Functions

Although  python  provides  you  with  many  built  in  functions,  sometimes  you  need  to  write  functions  that

perform  very  specific  actions.  Luckily,  python  allows  you  to  write  your  own  functions.  This  is  actually  very

simple.  All  you  need  to  do  is  follow  is  give  your  function  a  name,  ask  for  inputs,  write  the  function,  and

return  something.  Indentation  is  important  here  as  well.  See  example:

In  [125]:

In  [126]:

Writing  Scripts  and  the  Zen  of  Python

  
"""
Here  you  would  write  the  rest  of  your  script
"""
  
x  =  math.pi

def  square(x):  #  We  give  the  function  the  name  square  and  say  we  pass  in  x
        '''
        Really  pretty  documentation  that  you  should  write  all  the  time
  
        Parameters
        ----------
        ....
        
        Outputs
        -------
        ...
        '''
        
        output  =  x  *  x    #  define  some  variable  that  we  will  be  the  output  of  our  function
        return  output    #  return  the  variable  output

square(45)

Out[126]: 2025
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Writing  a  Script

Writing  a  script  is  pretty  simple,  so  I  will  try  and  go  over  it  pretty  quick.  A  script  should  start  with  all  of  your

imports  and  then  you  write  your  code.  It  should  be  neat  and  you  should  leave  one  clean  line  at  the  end  of

your  script  or  the  code  monster  will  come  and  eat  you.  Example  of  a  script:

In  [128]:

After  you  have  written  a  script  then  you  need  to  enter  your  ipython  console.  From  there,  direct  your

computer  to  the  directory  where  the  script  is  stored  and  type  "run  script.py"  That's  it  for  running  scripts.

Zen  of  Python  (PEP  20)

The  Zen  of  Python  is  a  set  of  basic  rules  that  one  should  follow  when  writing  python  code.  They  are

important  to  follow  as  they  will  make  your  code  readable  and  will  bring  good  code  karma  to  you  and  your

family.  Anytime  that  you  forget  these  rules,  type  "import  this"  into  your  console.

Beautiful  is  better  than  ugly.

Explicit  is  better  than  implicit.

Simple  is  better  than  complex.

Complex  is  better  than  complicated.

Flat  is  better  than  nested.

Sparse  is  better  than  dense.

Readability  counts.

Special  cases  aren't  special  enough  to  break  the  rules.

Although  practicality  beats  purity.

Errors  should  never  pass  silently.

Unless  explicitly  silenced.

In  the  face  of  ambiguity,  refuse  the  temptation  to  guess.

There  should  be  one--  and  preferably  only  one  --obvious  way  to  do  it.

import  math
import  os
from  __future__  import  division
  
x  =  2.0
  
y  =  x  *  math.pi
  
finalstuff  =  square(y)
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Although  that  way  may  not  be  obvious  at  first  unless  you're  Dutch.

Now  is  better  than  never.

Although  never  is  often  better  than  right  now.

If  the  implementation  is  hard  to  explain,  it's  a  bad  idea.

If  the  implementation  is  easy  to  explain,  it  may  be  a  good  idea.

Namespaces  are  one  honking  great  idea  --  let's  do  more  of  those!

In  [129]:

Style  Guide  for  Python  (PEP  8)

PEP  8  is  too  long  to  put  into  this  document,  but  I  would  highly  suggest  reading  through  it.  The

suggestions  in  PEP  8  are  very  helpful  in  making  your  code  readable  and  in  line  with  the  Zen  of  Python.  I

will  include  a  few  of  the  tips  that  I  find  important.

Indentation:  Use  4  spaces  per  indentation  level.  Python's  implicit  line  joining  inside  parentheses,
brackets  and  braces,  or  using  a  hanging  indent.  When  using  a  hanging  indent  the  following

considerations  should  be  applied;;  there  should  be  no  arguments  on  the  first  line  and  further  indentation

should  be  used  to  clearly  distinguish  itself  as  a  continuation  line.

Maximum  Line  Length:  Limit  all  lines  to  a  maximum  of  79  characters.

Blank  Lines:  Separate  top-level  function  and  class  definitions  with  two  blank  lines.  Method  definitions
inside  a  class  are  separated  by  a  single  blank  line.  Extra  blank  lines  may  be  used  (sparingly)  to  separate

groups  of  related  functions.  Blank  lines  may  be  omitted  between  a  bunch  of  related  one-liners  (e.g.  a  set

import  this

The  Zen  of  Python,  by  Tim  Peters

Beautiful  is  better  than  ugly.
Explicit  is  better  than  implicit.
Simple  is  better  than  complex.
Complex  is  better  than  complicated.
Flat  is  better  than  nested.
Sparse  is  better  than  dense.
Readability  counts.
Special  cases  aren't  special  enough  to  break  the  rules.
Although  practicality  beats  purity.
Errors  should  never  pass  silently.
Unless  explicitly  silenced.
In  the  face  of  ambiguity,  refuse  the  temptation  to  guess.
There  should  be  one--  and  preferably  only  one  --obvious  way  to  do  it.
Although  that  way  may  not  be  obvious  at  first  unless  you're  Dutch.
Now  is  better  than  never.
Although  never  is  often  better  than  *right*  now.
If  the  implementation  is  hard  to  explain,  it's  a  bad  idea.
If  the  implementation  is  easy  to  explain,  it  may  be  a  good  idea.
Namespaces  are  one  honking  great  idea  --  let's  do  more  of  those!
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of  dummy  implementations).

Whitespace  in  Expressions:  Avoid  extraneous  whitespace  in  the  following  situations:  Immediately
inside  parentheses,  brackets  or  braces;;  Immediately  before  a  comma,  semicolon,  or  colon,  Immediately

before  the  open  parenthesis  that  starts  the  argument  list  of  a  function  call,  Immediately  before  the  open

parenthesis  that  starts  an  indexing  or  slicing,  More  than  one  space  around  an  assignment  (or  other)

operator  to  align  it  with  another.  If  operators  with  different  priorities  are  used,  consider  adding  whitespace

around  the  operators  with  the  lowest  priority(ies).  Use  your  own  judgement;;  however,  never  use  more

than  one  space,  and  always  have  the  same  amount  of  whitespace  on  both  sides  of  a  binary  operator.

For  example:

Yes

In  [130]:

No

In  [  ]:

Comments:  Comments  that  contradict  the  code  are  worse  than  no  comments.  Always  update  comments!
Comments  should  be  complete  sentences.

We  are  hoping  to  edit  your  code  and  give  you  tips  on  how  to  make  it  stay  consistent  with  PEP  8  and  PEP

20.  We  recommend  using  the  sublime_linter  in  Sublimetext  2  to  stay  in  line  with  PEP  8.

Problems:

All  scripts  submitted  should  obviously  be  in  line  with  PEP  8  and  PEP  20  for  this  assignment  because  that

is  one  of  the  topics  covered.  Include  comments.

Problem  1:  Write  a  script  that  generates  the  following:

i)  A  list  with  all  of  the  elements  from  0  to  100

ii)  A  list  with  all  of  the  even  elements  from  0  to  100

iii)  A  list  that  contains  all  of  the  even  numbers  starting  at  100  and  going  to  0

Problem  2:  Write  a  script  that  creates  a  piecewise  function  f(x)  =  y  that  satisfies  the  following:

x  =  0
x  +=  1
x  =  x  +  1
x  =  x**2  +  2
test  =  x*x  +  2*x
y  =  (x+2)  *  (x-3)

x=x+1
x  +=1
x  =  2  *  x  +  1
y  =  (x  +  2)  *  (x  -  3)
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i)  When  x  <  0  then  y  =  0

ii)  When  0  <  x  <=5  then  y  =  x*x

iii)  When  x  >  5  then  y  =  25

iv)  Now  copy  the  following  code  to  create  a  plot

In  [132]:

Problem  3:  If  we  list  all  the  natural  numbers  below  10  that  are  multiples  of  3  or  5,  we  get  3,  5,  6  and  9.
The  sum  of  these  multiples  is  23.

Write  a  script  that  prints  the  sum  of  all  the  multiples  of  3  or  5  below  1000.

In  [  ]:

import  matplotlib.pyplot  as  plt
#  Define  function  in  here

test  =  range(-10,  15,  1)
plt.plot(f(test))    #  Note  this  isn't  your  actual  function  being  plotted  below.

Out[132]: [<matplotlib.lines.Line2D  at  0x7070828>]

  



Lab 3

Essentials: NumPy

Why Arrays?

Problem 1 Let’s begin with a simple demonstration of why arrays are important
for numerical computation. Why use arrays when Python already has decently
e�cient list object? In this demonstration, we will try squaring a matrix. The
matrix will be represented as a two dimensional list (i.e. a list of lists).

Write a function that will accept two matrices (two dimensional list), A and
B, and return AB following the rules of matrix multiplication.

k = 10

a = [range(i, i+k) for i in range(0, k**2, k)]

Time how long your function takes to square matrices for increasing values of k.
Now import NumPy and create a NumPy array, b as shown below. We demon-

strate how to square NumPy arrays as matrices below. b*b does not square the array,
but rather multiplies b with itself element-wise. To get matrix multiplication for
NumPy arrays, you must use np.dot

import numpy as np

b = np.array([range(i, i+k) for i in range(0, k**2, k)])

np.dot(b, b)

Time how long NumPy takes to square arrays for increasing sizes of k.
What do you notice about the time needed to square a two dimensional list

vs. a two dimensional NumPy array?

NumPy
NumPy is a fundamental package for scientific computing with Python. It provides
an e�cient n-dimensional array object for fast computations. This lab will focus on

19
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how to use these powerful objects. NumPy is commonly imported as shown below.

: import numpy as np

Before beginning this lab, it will be useful to understand certain concepts and terms
used to describe NumPy arrays.

N-Dimensions

One, two, and three dimensional arrays are easy to visualize. But how do we
visualize a four, ten, or fifteen dimensional array? NumPy arrays are best thought
of as arrays within arrays. A one dimensional array consists of only elements. A two
dimensional array is really just an array containing arrays which contain elements.
Extending this metaphor, a three dimensional array is an array of arrays of arrays.
Can you guess what a five dimensional array is? Let’s define a three dimensional
array.

: arr = np.random.randint (50, size=(5, 4, 3))

Arrays have several attributes. We use shape and size to describe the how big
an array is. Shape tells how how many dimensions an array has and how big each
dimension is. Size gives the total number of elements in the array.

: arr.shape

(5, 4, 3)

: arr.size

60

If we want to know how much memory an array takes to store, we can use
arr.nbytes. The number of bytes is dependent on the data type (dtype) of the array.
The data types that NumPy uses are di↵erent from Python data types. An integer
in NumPy is not the same as an integer Python. Remembering this is vital. NumPy
uses machine data types to speed up calculations. However, these datatypes are sus-
ceptible to a problem called overflow. A 64 bit integer has enough bits to represent
integers between �9, 223, 372, 036, 854, 775, 808 and 9, 223, 372, 036, 854, 775, 807. If
we have an array with �9, 223, 372, 036, 854, 775, 808 and we decide to subtract 1,
the integer wraps around and becomes 9, 223, 372, 036, 854, 775, 807!

: arr.dtype

dtype(’int64’)

: arr.nbytes

480

Each element of the array has a unique address that describes it location.
Indexing always starts at 0. Also, like Python lists, negative indices are valid and
count from the tail of the array. We will discuss indexing in detail later in this lab.

: arr[0, 0, 0] # returns the first element of arr

: arr[-1, -1, -1] #returns the last element of arr
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Creating Arrays
NumPy has several methods for creating and initializing arrays. When creating an
array, we can optionally specify the data type that is stored in the array. NumPy
arrays only store elements of the same data type, however, that data type can be
any arbitrary object. The array order dictates how the array is laid out in memory.
There is C order and Fortran order. C ordered arrays are also known as row-major
arrays. This means that the fastest changing index correspond to the rows of the
array. Fortran ordered arrays are column-major. Let’s look at a few of the ways we
can create arrays in NumPy.

• np.array: Makes an array from a Python list or tuple.

• np.empty: Allocates an array of a specific size without initializing the elements.

• np.ones: Allocates and array and initializes each element to 1.

• np.zeros: Allocates and array and initializes each element to 0.

• np.identity: Allocates a 2D array array with the main diagonal initialized to
1 and zeros everywhere else.

Indexing Arrays

Array Views and Copies

Before we begin accessing arrays, it is important to understand that NumPy has
two ways of returning an array. Slice operations always return a view and fancy
indexing always returns a copy. Understand that even though they may look the
same, views and copies completely di↵erent.

Views are special arrays that reference other arrays. Changing elements in a
view changes the array it references. Below we demonstrate the behavior of a view.
Notice that c looks like a copy of b, but it is, in fact, not at all.

: b = np.arange (25).reshape (5,5); b

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: c = b[:]; c #looks like c is a copy of b

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: id(c) == id(b) #We have unique objects

False

: c[2] = 500; c

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[ 15, 16, 17, 18, 19],
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[ 20, 21, 22, 23, 24]])

: b #changing c also changed b!

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[ 15, 16, 17, 18, 19],

[ 20, 21, 22, 23, 24]])

The reason that changing the array c also changed the array b is because c and
b share the same memory, even though they are di↵erent Python objects. Views
reduce the overhead of making copies of arrays and are useful when we want to
change certain parts of the array.

A copy of an array is a separate array that is allocated separately.

: b = np.arange (25).reshape(5, 5); b

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: c = b.copy()

: id(c) == id(b) #we still have separate objects

False

: c[2] = 500

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[ 15, 16, 17, 18, 19],

[ 20, 21, 22, 23, 24]])

: b

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

Changing the data in a copy of an array, doesn’t change the data in the original
array. The two arrays address di↵erent locations in memory.

Slices

Each element of an array has a unique address that we can use to retrieve that
element. Indexing NumPy arrays is syntatically the same as indexing Python lists.
We will demonstrate on a random 2D array. Remember that slicing arrays always
return views of the array. In this case, the indexing object is a Python tuple.

: arr = np.arange (25).reshape (5,5); arr

array ([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: arr[0, 0] #access the first element

0

: arr[-1, -1] #access the last element
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: arr[0] #access the first row

array([0, 1, 2, 3, 4])

We can access ranges of elements using Python lists. NumPy, though, has a much
faster, more concise way to select ranges using the arr[start:stop:step] notation.

: arr [::2] #get every other row. equivalent to arr[range (0, len(arr),

2)]

array ([[ 0, 1, 2, 3, 4],

[10, 11, 12, 13, 14],

[20, 21, 22, 23, 24]])

: arr[::2, ::2] #get every other row and every other column

array ([[ 0, 2, 4],

[10, 12, 14],

[20, 22, 24]])

: arr[3:, 3:] #extract lower right 2x2 subarray

array ([[18, 19],

[23, 24]])

: arr[:, 1] #extract second column

array([ 1, 6, 11, 16, 21])

Fancy Indexing

When the indexing object is an object other than a tuple, NumPy behaves slightly
di↵erent. One di↵erence is that fancy indexes always return a copy of an array in-
stead of a view. There are two types of fancy indexes: boolean and integer. Boolean
indexing returns an array of True or False values depending on some evaluating con-
dition.

: bmask = (arr > 15) & (arr < 23)

array ([[False , False , False , False , False],

[False , False , False , False , False],

[False , False , False , False , False],

[False , True , True , True , True],

[ True , True , True , False , False]], dtype=bool)

: arr[bmask]

array ([16, 17, 18, 19, 20, 21, 22])

: arr[(arr > 15) & (arr < 23)] #this is the shortened form

array ([16, 17, 18, 19, 20, 21, 22])

: arr[~bmask] #invert the mask

: arr[(0, 2, 4), (0, 2, 4)] #grab every other element of diagonal

array([ 0, 12, 24])

: arr[range(0, 5, 2), range(0, 5, 2)] #same as above , but with ranges

array([ 0, 12, 24])

: arr[:, [0, -1]] #grab first and last column

array ([[ 0, 4],

[ 5, 9],

[10, 14],

[15, 19],

[20, 24]])
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Array Broadcasting
Array broadcasting allows NumPy to e↵ectively work with arrays with sizes that
don’t match exactly. There are four basic rules to determine the behavior of broad-
casted arrays

1. All input arrays of lesser dimension than the input array with largest dimen-
sion have 1’s prepended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the
input sizes in that dimension.

3. An input can be used in the calculation if its size in a particular dimension
either matches the output size in that dimension, or has a value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that
dimension will be used for all calculations along that dimension.

To broadcast arrays, at least one of the following must be true.

1. All input arrays have exactly the same shape.

2. All input arrays are of the same dimension and the length of corresponding
dimensions match or is 1.

3. All input arrays of fewer dimension can have 1 prepended to their shapes to
satisfy the second criteria.

Problem 2 Explore array broadcasting. Create example for each of the three cases
where arrays are broadcasted.

Saving Arrays
Sometimes it is desirable to save an array to a file to be used for later. NumPy
provides several easy to use methods for saving and loading array data to files.

np.save(file, arr) Save an array to a binary file
np.savez(file, *arrs) Save multiple arrays to a binary file
np.savetxt(file, arr) Save an array to a text file

np.load(file) Load and return an array from a binary file
np.loadtxt(file) Load and return an array from text file

Let’s practice saving an array to a file and loading it again. Note that when
saving an array, NumPy automatically appends the extension .npy if it does not
already exist.
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a = np.arange (30)

np.save(’test_arr ’, a)

new_a = np.load(’test_arr.npy’)

np.savez(’test_multi ’, a=a, new_a=new_a)

arrs = np.load(’test_multi.npz’)

The variable arrs points to a dictionary object with the keys a and new_a which
reference the arrays that have been saved.



Lab 4

Algorithms: Python
Essentials (Arrays)

Lesson Objective: This lesson explains basic matrix operations in Python.

Matrices form the core data structure of NumPy and SciPy. Thus, we will
explore the ways one can manipulate matrices in Python.

Before we begin, we make a few important comments about how Python works
with matrices. First, matrices can be represented in NumPy in two ways. NumPy
has a matrix data type and an array data type. Matrix objects are a special case
of the array object. The main di↵erences are that the matrix object allows for
a clearer, more MATLAB style syntax. In these labs, we will use arrays because
most functions in NumPy accept arrays as input. We can easily convert arrays to
matrices using the .asmatrix() method. As such, all future references to matrices
in the context of NumPy will be mentioned as arrays (a matrix being a 2D array).
When using arrays it is important to be sure that the dimensions are compatible.

We also note that arrays are by default are accessed row by row. This is called
row-major. This is the opposite of MATLAB, which is column-major. However,
NumPy arrays can converted to column-major arrays.

Finally, with all code examples in these labs we assume that you have already
imported the SciPy library (type import scipy as sp when you first open ipython).

To begin, we will work with vectors. We will demonstrate a variety of methods
to create vectors. You should follow these demonstrations on your own computer
and experiment as you go. Vectors are at least one dimensional arrays. There are
several ways to create vectors in Python. Try the following in IPython:

: a = sp.array ([1,2,3,4]); a

array([1, 2, 3, 4])

Notice the square brackets and the commas. The square brackets denote a
list in Python with values separated by commas. This is a row vector. The ; a is
responsible for printing the current value of a. How do we make a column vector?
We simply pass the array() method a list of lists containing a single value each.

29
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: b = sp.array ([[3] ,[4] ,[6] ,[1]]); b

array ([[3],

[4],

[6],

[1]])

We can also use the hstack() and vstack() methods (meaning horizontal stack
and vertical stack).

: a1 = sp.hstack ([5,6,7,8])

: b1 = sp.vstack ([9,0,1,2])

We combine vectors together by placing two or more of equal dimension inside
square brackets. The technical term for this is concatenation. Remember that the
dimensions of each array must match. Try the following.

: c = sp.concatenate ((b,b1), axis =1); c

There are several methods to automate vector creation. For example, we can
build a vector of consecutive values using the arange() method.

: sp.arange (5)

Notice how the values start at zero and increment up to, but not including 5.
This is standard Python behaviour. The arange() method also allows us to specifiy
step size This syntax also allows us to specify step size:

: sp.arange(1,3,step =0.5)

We can similarly use negative step sizes (note that the starting must be greater
than the endpoint).

: sp.arange(3,1, step =-.5)

A related function is called linspace(). It allows us to specify two endpoints
and the number of equidistant values we want between the two. Unlike arange(),
linspace() will always include both endpoints.

: sp.linspace (1,2,5)

The plot() function uses two vectors to create a graph, the first vector rep-
resenting x-values and the second representing the corresponding y-values. To use
plot(), we need to import the Matplotlib library. As an example we plot a line of
slope two using the following commands (See figure 1.1):

: import matplotlib.pyplot as plt

: x = sp.linspace (-2,2,20)

: plt.plot(x,2*x)

: plt.show()

By typing plt.plot? into the command line we can find the exact syntax and
options for the plot() function. For example we can type plot(x,2*x,’r*’) to plot
red star data points instead of a line.
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Figure 4.1: A simple graph

Problem 1 Plot a line with slope three with black diamond data points. Plot for
the domain x 2 [�5, 5].

Creating is done by concatenating vectors in the correct manner. For example:

: sp.array ([[1, 2, 3],[4, 5, 6],[7, 8, 9]])

Problem 2 Create a matrix showing the times table from 1 to 6. Do not enter each
number manually. Instead, create a variable x = sp.arange(1,7) and let the rows of
the matrix be multiples of x.

Another technique for creating matrices is using outer products. An outer
product is the method of multiplying two vectors to get a matrix. For example, if
we want to make a matrix that is two repeated rows of the vector 1:5 we can do
the following:

: sp.vstack ([1 ,1])*sp.arange (1,6)
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Here we are multiplying a 2⇥ 1 vector and a 1⇥ 5 vector, which yields a 2⇥ 5
matrix. The two rows are identical since the entries of the first vector are all ones.

Problem 3 Create the same matrix from problem 2, using outer products this
time. This implementation, although perhaps more di�cult to conceptualize, makes
for much more concise code.

You can also combine matrices in the same way as vectors, as long as the
dimensions match correctly, i.e. the same number of rows or the same number of
columns. Try the following:

: D = sp.hstack ((b, c))

: E = sp.concatenate ([D.T, sp.vander(sp.arange (1,5))])

Here we used the vander() method, which accepts a vector of length n and
creates an n⇥n matrix. The columns of this matrix are powers of the input vector
(evaluated point-wise). More information about the vander() method by typing
sp.vander?.

To briefly review, vectors are built using the square brackets, with semi-colons
to build columns and spaces to build rows. Matrices are built in exactly the same
way, using vectors or matrices instead of individual numbers.

Often while writing code it is necessary to know information about the prop-
erties of an array. The matrix properties can be accessed as follows.

: E.ndim #dimension of E

: E.nbytes #size of E in memory (bytes)

: E.size #total area of E (the product of the dimensions )

: E.shape #size of E in each dimension

For this next problem we will need to read an array from a file. SciPy provides
a method for loading data from text files. We are going to load bucky.csv as an array.

: bucky = sp.loadtxt("bucky.csv", delimiter=",")

This array represents the connections between vertices of a truncated isoca-
hedron. This soccer ball like shape is found in certain types of carbon molecules
known as fullerenes (specifically C60, shown in shaped

Problem 4 The bucky matrix represents the connections between the vertices of
a truncated isocahedron. This structure matches both the structure of a standard
soccer ball, and also of certain types of carbon molecules known as fullerenes (specif-
ically C60, shown in ??). It is also related to the structure of the geodesic dome.
Find the size of this matrix.
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Figure 4.2: The structure of the C60 molecule.

To access information in an array, you put the index you wish to access inside
square brackets after the variable name. This works for both variable assignment
and retrieval. Remember that indices start at zero in SciPy.

: rand_mat = sp.random.randint (10, size =(3 ,5))

: rand_mat [0,0]

: rand_mat [2,2] = 37

The colon operator is used to retrieve an entire row or column from an array.
For example, enter the following to get the third column of an array:

: rand_mat [:,2]

We similarly retrieve the first row:

: rand_mat [0,:]

Note that each retrieved row or column is returned as a single dimensional
array (meaning that row or column loses it meaning). If we want to retain the
retrieved row as a column or row we can write instead rand_mat[:,[2]].

It is also possible to retrieve multiple columns or rows at once. For example,
we retrieve the second and fourth columns of an array by entering:

: rand_mat [:,[1 ,3]]

We list the entries of an array as a single dimensional array using the flatten()
method.

: rand_mat.flatten () #flattens along the rows (C like arrays)

: rand_mat. flatten(’F’) #flattens along the columns (Fortran like

arrays)

The following line tells Python to retrieve the entries in the second row, from
the second column to the end:

: rand_mat [1,1:]
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Deleting a row or column can be done by using the delete() method. The last
argument is the axis along which to delete. If the deletion axis is not specified, then
the array will be flattened before being returned. Here we remove the column at
index 1.

: sp.delete(rand_mat , 1, 1)

Problem 5 Try to assign a vector of incorrect size to a piece of a matrix. What
happens? Also, try to concatenate two matrices that don’t have matching dimen-
sions. What error message do you get? It is important to learn how to read error
messages for troubleshooting purposes.

Numerical operations are by default done element-wise on arrays. A common
mistake is to use * for matrix multiplication. This simply multiplies each element
by a constant. To perform matrix multiplication, SciPy provides the dot() method.
To take the transpose of an array, use the .T property. Observe the behavior of the
array operations.

: b = sp.vstack ([8 ,0 ,2])

: c = sp.vstack ([4 ,2 ,1])

: b+c

array ([[12] ,

[ 2],

[ 3]])

: b-c

array ([[ 4],

[-2],

[ 1]])

: A = sp.array ([0,4,5,4,0,2,9,4,6]).reshape ((3 ,3))

: A*b #b is a column vector , so each row is multiplied by a constant

array ([[ 0, 32, 40],

[ 0, 0, 0],

[18, 8, 12]])

: A*b.T #b.T is a row vector , so each column multiplied by a constant

array ([[ 0, 0, 10],

[32, 0, 4],

[72, 0, 12]])

: sp.dot(A,b)

array ([[10] ,

[36],

[84]])

: sp.power(A,2) #this is A^2

array ([[ 0, 16, 25],

[16, 0, 4],

[81, 16, 36]])

: A/2 #notice that type is perserved. This is integer division

array ([[0, 2, 2],

[2, 0, 1],

[4, 2, 3]])

: A/2. #divide by a float yields an array of floats.
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array ([[ 0. , 2. , 2.5],

[ 2. , 0. , 1. ],

[ 4.5, 2. , 3. ]])

The majority of elementary functions, such as sin, cos, exp, etc. act element-
wise on arrays as well. In fact, for any operation in SciPy, expect it to act element-
wise unless otherwise noted. For example:

: sp.sin(sp.arange (4)*sp.pi/4)

array([ 0. , 0.70710678 , 1. , 0.70710678])

Also, as a matter of reference, raising a value to a power is done using **. This
is a convention from older programming languages that has carried over.

There are a variety of functions that let us summarize information about a
given array. For example, the sum() function returns the sum along a given axis
of an array. When an axis is not specified, all elements in the array are summed
together.

: B = sp.arange (9).reshape ((3 ,3))

: sp.sum(B) #all entries are summed together
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: sp.sum(B, axis =0) #sum each column

array([ 9, 12, 15])

: sp.sum(B, axis =1) #sum each row

array([ 3, 12, 21])

Some other functions that summarize information about the entries of an
array are contained in the Table 1.1. Note that each of these functions reduces
the size of the matrix (which makes sense, since they are summarizing functions).
These functions work across columns by default, although most of them allow you
to specify an axis to work across.

These functions can be incredibly useful. For example, suppose that we want
to estimate the derivative of sin(x2). A simple approximation for a derivative is

f 0(x) ⇡ f(x+ h)� f(x)

h

Presumably this approximation is good when h is small. We use the diff()

function to perform this approximation using the following code:

: h = .001

: x = sp.arange(0,sp.pi,h)

: approx = sp.diff(sp.sin(x**2))/h

We have just approximated the derivative of sinx2 at several thousand points
between 0 and ⇡. The approximated derivatives are stored in the array approx. Now
let’s compute the actual derivative at each point using the formula:

f 0(x) = 2xcos(x2)

: actual = 2*sp.cos(x**2)*x;
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Function Description Usage
max Returns maximum entries A.max(axis)
min Returns mimimum entries A.min(axis)
mean Returns the mean A.mean(axis)
scipy.median Returns the median sp.median(A, axis)
std Returns the standard de-

viation
A.std(axis)

scipy.diff Returns the di↵erences
between entries

sp.di↵(A, axis)

prod Returns the product of en-
tries

A.prod(axis)

any Returns 1 if there are non-
zero entries, zero other-
wise

A.any(axis)

all Returns 1 if all entries are
non-zero, zero otherwise

A.all(axis)

nonzero Returns indices of non-
zero entries

A.nonzero(axis)

scipy.linalg.norm Returns the norm norm(A, order)

Table 4.1: Various summarizing functions

Plot the approximated derivative and the actual derivative on two di↵erent
plots. They should look almost identical.

: from matplotlib import pyplot as plt

: plt.figure (1) #create an empty figure

: plt.subplot (211) #create an empty subplot in figure

: plt.plot(x, approx)

: plt.subplot (212) #create another subplot in same figure

: plt.plot(x, actual)

: plt.show()

Problem 6 Now use the max() command to find the maximum di↵erence between
the estimated derivative and the actual derivative (the dimensions will not match
exactly (why?); fix this by removing the last entry from one of the vectors). Try
plotting the approximation, actual deriviatives, and the error on the same graph.
What does it look like?

Problem 7 The command sp.rand() returns an array of a specified shape with val-
ues “randomly” selected from a uniform distribution between zero and one. Create
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a vector with ten thousand entries using this command. The theoretical values for
the mean(µ) and standard deviation(�) of a uniformly distributed random variable
between a and b are

µ =
a+ b

2

� =
b� ap

12

These values are calculated using moment-generating functions. Use the mean() and
std() methods on the vector you created earlier. How do these compare to the
theoretical values?

The canonical problem in linear algebra is solving the equation Ax = b for x,
where A is an n ⇥ n matrix and b is a 1 ⇥ n vector. One method for solving this
equation is by calculating the matrix inverse of A (A�1) and multiplying A�1b. To
find the inverse of an array, use the linalg.inv() method. For example, we create
a random system Ax = b and solve it using the inv() method (you may check the
calculations by hand):

: A = sp.array ([1,5,2,3,5,1,4,7,2]).reshape ((3 ,3))

: b = sp.vstack ([1, 3, 11./3])

: from scipy import linalg as la

: sol = sp.dot(la.inv(A),b); sol

array ([[ 0.66666667] ,

[ 0.33333333] ,

[ -0.66666667]])

Recall that a norm is a measurement on the size of a vector. For example, the
Euclidean norm measures the straight line distance from the origin to the “end” of
a vector.

kxk =
q

x2
1 + ...+ x2

n

If the norm of the di↵erence of two vectors is close to zero, then they are good
approximations of each other. The linalg.norm() function calculates the euclidean
norm of an input vector, and thus we use it to verify that our approximation of the
derivative is close to the actual derivative:

: la.norm(b-sp.dot(A,sol))

5.5288660751834285e-15

However, computing the inverse of a large matrix is di�cult. Not only that,
but not all matrices have inverses. There is a much more e�cient and general way
to solve Ax = b in SciPy. This method is similar to the backslash method found in
MATLAB. It is the linalg.solve() method. Compare the results obtained with the
linalg.solve() method to those of the linalg.inv() method.
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: sol2 = la.solve(A,b); sol2

array ([[ 0.66666667] ,

[ 0.33333333] ,

[ -0.66666667]])

: la.norm(sol2 -sol)

4.5775667985222375e-16

We mentioned that linalg.solve() is more e�cient than using the function
inv, meaning it returns a result faster. Create the following script to compare the
e�ciency of each method:

import scipy as sp

from scipy import linalg as la

from timer import timer

def invMethod(A, b):

return sp.dot(la.inv(A),b)

def solveMethod(A, b):

return la.solve(A,b)

n = 300

A = sp.rand(n,n)

b = sp.rand(n,1)

with timer(repeats=3, loops =10) as t:

t.time(invMethod ,A,b)

t.time(solveMethod ,A,b)

t.printTimes ()

Now run the script. You should notice a significant di↵erence in execution
time (you may need to scale n appropriately). Are you surprised that invMethod()

is significantly slower than solveMethod? Specifically, SciPy uses the the LU factor-
ization and backwards substitution to solve the linear system without any matrix
inversions.

The linalg.solve() method can also be used to solve several systems at once.
For example:

: c = sp.rand(n, 1)

: la.solve(A, sp.c_[b,c]) #sp.c_[] concatenates column vectors

You might now be asking why we would want to do this. We can answer this
by investigating the time it takes to solve two systems. Open a new script file and
write the following:

import scipy as sp

from timer import timer

n = 3000

A = sp.rand(n,n)

b = sp.rand(n,1)

c = sp.rand(n,1)

def multSys(A, *col_vecs):

return la.solve(A, sp.hstack(col_vecs))
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def singSys(A, *col_vecs):

return [la.solve(A, x) for x in col_vecs]

with timer(repeats=3, loops =100) as t:

t.time(multSys ,A,b,c)

t.time(singSys ,A,b,c)

t.printTimes ()

This script creates a random 3000 ⇥ 3000 matrix, and two random 3000 ⇥ 1
vectors (you can experiment with di↵erent sizes of matrices and vectors). It then
solves the two systems of equations twice, once using two backslash commands and
the other using only one. Remember that the semi-colons suppress the output in
the script.

Now execute this script. You should notice that the first method takes about
twice as long as the second method. This is because linalg.solve() uses the LU
decomposition, and in the second method it only has to execute this factorization
once. This highlights the importance of understanding the algorithms that python
uses: we can solve problems much faster if we understand what python is doing.

A number of other important operators that you will need are found in Table
1.2.

Method Description Usage
linalg.inv() Matrix inverse la.inv(A)
rank() Rank sp.rank(A)
linalg.norm() Norm (default: 2-norm) la.norm(A, ord)
linalg.expm() Matrix exponential la.expm(A)
linalg.det() Determinant la.det(A)
linalg.eig() Eigenvalue decomposition la.eig(A)
linalg.svd() Singular value decomposi-

tion
la.svd(A)

linalg.lu() LU decomposition la.lu(A)
linalg.qr() QR factorization la.qr(A)
linalg.cholesky() Cholesky factorization la.cholesky(A)

Table 4.2: Useful matrix operations

Problem 8 The linalg.lstsq() method can be also used to solve overdetermined
systems. This is sometimes also known as the least squares method. The formula
is (ATA)�1AT ⇤ b. Create a script to verify numerically that the linalg.lstsq()

method and the least squares formula yield the same result. Hint: Use the linalg.

norm() function to verify equality, as we did with linalg.inv() and linalg.solve().



Lab 5

Algorithms: Matrix
Operations and
Algorithmic Complexity

Lesson Objective: This section explains how to create specific types of large
matrices. It also introduces the concept of temporal complexity. Finally, it explores
SciPy’s special methods for working with sparse matrices.

Temporal Complexity
One of the most important questions in scientific computing is: How long will
this operation take? The concept of temporal complexity attempts to answer this
question by determining how much time a function needs to operate on a given size
of input. For example suppose calculating the inverse of a matrix of size n requires
the following number of calculations.

f(n) =
3n3

2
+ 75n2 + 250n+ 30

What is the most important part of this expression? When our input gets very
large the only relevant term in this equation is n3. For this reason we say that
f(n) 2 O(n3), or more commonly that f(n) is O(n3) (spoken “Big O of n cubed”
or “Order of n cubed”). This notation is borrowed from analysis. This notation
captures the salient behavior of our temporal complexity, or more precisely the
growth rate we can expect of the execution time of our algorithm. We will discuss
this concept later, but this is a simple introduction to the notion of complexity
and Big O. Spatial complexity is the amount of memory an algorithm uses, and is
defined similarly.

Advanced Matrix Tools
We now introduce a few di↵erent ways to build matrices. Two important methods
available for building matrices are zeros() and ones(). These commands allow us to
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build matrices populated entirely with zeros or ones, respectively. For example, to
build a 3-vector filled with zeros we enter the following command:

: import scipy as sp

: sp.zeros ((3 ,1))

array ([[ 0.],

[ 0.],

[ 0.]])

To find additional options for these methods, you can use the help system.
One important use of the zeros() method is to allow us to pre-allocate memory.

Pre-allocation is simply the practice of reserving a chunk of memory for later use.
We can always add more space to a matrix using the methods we learned in lab 1,
but this requires many extra internal operations because of way arrays are stored
in memory. Thus, it is generally faster to allocate a matrix with its final size and
modify its values rather than building an array as you go.

Table 1.3 gives a few commands that allow us to build types of useful matrices.

Function Description Usage
eye() Identity matrix sp.eye(m, n)
zeros() Zero matrix sp.zeros((m, n))
ones() One matrix sp.ones((m, n))
diag() Building (or retrieving)

along a diagonal
linalg.toeplitz() Matrix with constant di-

agonals
la.toeplitz()

linalg.triu() Upper triangular
linalg.tril() Lower triangular
rand Psuedo-random matrix,

uniformily distributed
randn Psuedo-random matrix,

normally distributed
random.randint() Psuedo-random matrix,

uniformily distributed
integers

sp.random.randint()

tile() Copy across a given di-
mension

sp.tile(A, reps)

Table 5.1: Special matrix creation commands

For example, suppose that we want to create a matrix with �2 on the diagonal,
and ones on the super and sub diagonal. We can do this by using the following
command:

: from scipy import linalg as la

: la.toeplitz ([-2,1,0])

array([[-2, 1, 0],

[ 1, -2, 1],
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[ 0, 1, -2]])

This matrix is useful because it numerically approximates the second deriva-
tive of a function. We investigate some properties of this matrix in Problem 6 of
this lab, and explain more about this matrix later.

Problem 1 Use the diagflat() method to create the following matrices. All of these
matrices should be easily scaleable (ie only minor modification would be required
to change the size).

0

BBBB@

1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1

1

CCCCA

0

BBBB@

1 1/2 1/3 1/4 1/5
1/2 1 1/2 1/3 1/4
1/3 1/2 1 1/2 1/3
1/4 1/3 1/2 1 1/2
1/5 1/4 1/3 1/2 1

1

CCCCA

Problem 2 Create the matrices from Problem 1 using the methods linalg.toeplitz

() or linalg.triu(). Which method is easier? Now use whichever command is easiest
to create the matrix: 0

BBBB@

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

1

CCCCA

Sparse Matrices
In this section we discuss how sparse matrices are used and constructed. A sparse
matrix is a matrix that has few non-zero entries (where few is generally relative to
the number of entries in the matrix). SciPy has several di↵erent ways of storing
sparse matrices. Each way has it pros and cons (the reader is encouraged to read
the help for way).

Type the following into IPython.

: from scipy import sparse as spar

: A = sp.diagflat ([2 ,3 ,4])

: B = spar.csc_matrix(A)

: C = B.todense ()

Notice that the matrix A has only three non-zero entries, and so we can
consider it sparse. In memory, an array stores a bit of data (be it an integer, float,
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Function Description
sparse.bsr() Compressed Block Sparse Row
sparse.coo() Coordinate
sparse.csc() Compressed Sparse Column
sparse.csr() Compress Sparse Row
sparse.dia() Sparse Diagonal
sparse.dok() Dictionary of Keys
sparse.lil() Linked List

Table 5.2: Sparse matrix representations in SciPy

or complex number) each entry, meaning that a 3 ⇥ 3 matrix requires a total 9
blocks of memory. However, if we leverage the sparsity of A we realize that we only
need to store 3 numbers. The sparse methods do exactly this: they store only the
non-zero entries and their locations in the matrix. No longer are we working with
array. SciPy has many methods for performing operations on sparse arrays. To
convert back to a dense matrix, we use the .todense() property of the sparse matrix.
We can also convert between the di↵erent types sparse arrays.

We remark that if you want to make a sparse diagonal matrix, the best way
to do it isn’t to use diagflat() followed by sparse, it’s actually better to use the
sparse.spdiags() method:

: spar.spdiags ([2,3,4],0,3,3)

This is because oftentimes when we are using sparse matrices we are dealing
with matrices that are too large to be handled e�ciently by python when represented
in full form.

Banded Matrices
A banded matrix is one whose only non-zero entries are diagonal strips. For exam-
ple, the matrix

A =

0

BB@

1 2 0 0
3 4 5 0
0 6 7 8
0 0 9 10

1

CCA

is banded because there are three nonzero diagonals. This particular type of banded
matrix is called a tri-diagonal matrix.

You can easily create banded matrices using the diagflat() method. For ex-
ample, the matrix A above can be created by entering

: sp.diagflat ([3,6,9],-1) + sp.diagflat ([1,4,7,10],0) + sp.diagflat

([2,5,8],1)
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Often a better way to create a tri-diagonal is it use the spar.spdiags() method.
This is because many diagonal matrices are sparse. For example, we create the
same matrix in Python (while designating that it is sparse) using the command:

: Z = sp.array ([[3, 1, 0],[6, 4, 2],[9, 7, 5] ,[0 ,10 ,8]]).T

: spar.spdiags(Z,[-1,0,1],4,4)

For more information, check the documentation by typing spar.spdiags?. For
example we create a tri-diagonal array with uniformily distributed random entries.
This example also demonstartes the e�ciency of using sparse arrays.

: B = sp.rand (3 ,10000)

: A = spar.spdiags(B,range(-1,2) ,10000 ,10000)

: denseA = A.todense () #only do this step if you have _lots_ of

memory!

: A.data.nbytes

240000 #about 0.24 MB of memory

: denseA.nbytes

800000000 #about 762.9 MB of memory!

We can’t use the full command in this case because the computer will almost
certainly run out of memory (the matrix is 10,000⇥ 10,000). However, we can still
visualize this matrix using the plt.spy() command from matplotlib, which essentially
shows the location of non-zero entries in a matrix. The output of plt.spy(A) in this
case is shown in Figure 1.2:

Figure 5.1: The output of the spy command.
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Using Sparse Matrices
Consider the linear system Ax = b, where A is a 100,000 ⇥ 100,000 tri-diagonal
matrix. To store a full matrix of that size in your computer, it would normally
require 10 billion double-precision floating-point numbers. Since it takes 8 bytes
to store a double, it would take roughly 80GB to store the full matrix. For most
desktop computers, that fact alone makes the system numerically prohibitive to
solve. The temporal complexity of the problem is even more problematic. Methods
for directly solving an arbitrary linear system are usually O(n3). As a result, even
if the computer could store an 80GB matrix in RAM, it would still take several
weeks to solve the system. However, since we don’t have computers with that much
available RAM, most of the matrix would have to be stored on the hard drive, so
the computation would probably take between 6 months to a year.

The point is that even the next generation of computers will struggle with
solving arbitrary linear systems of this size in a reasonable period of time. However,
if we take advantage of the sparse structure of the tri-diagonal matrix, we can solve
the linear system, even with a modest modern computer. This is because all of
those zeros don’t need to be stored and we don’t need to do as many operations to
row reduce the tri-diagonal system.

Let’s first compute the spatial complexity of the above system when considered
as a sparse matrix. There are three diagonals that have roughly 100,000 non-zero
entries. That’s 300,000 double-precision floating point numbers, which is about 2.4
MB (Less storage than your favorite song). As a result, it will easily fit into the
computer’s RAM. Furthermore, the temporal complexity for solving a tri-diagonal
matrix is O(n). Let’s see how long it takes to solve the system for random data:

: from scipy.sparse import linalg as sparla

: from timer import timer

: D = sp.rand(3, 100000)

: b = sp.rand(1, 100000)

: A = spar.spdiags(D,[ -1 ,0 ,1] ,100000 ,100000)

: def solSys ():

....: return sparla.spsolve(A,b)

: with timer() as t:

....: t.time(solSys)

....: t.printTimes ()

Problem 3 Write a function that returns a full n ⇥ n tri-diagonal array with 2’s
along the diagonal and �1’s along the two sub-diagonals above and below the di-
agonal. Hint: Use the la.toeplitz() method. Note that this is the second derivative
matrix that we discussed at the beginning of this lab.

Problem 4 Write another function that builds the same array as above, but as a
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sparse array. You must build this as a sparse matrix from the beginning. Hint: Use
the spar.spdiags() method.

Problem 5 Solve the linear system Ax = b where A is the n⇥n tri-diagonal array
from the above two problems and b is randomly generated. How high can you go
for each method? Make a table for several di↵erent values of n and the time it took
to solve for each run. What conclusions can you draw?

Problem 6 Using the sparse array above and the method la.eigs(), calculate the
smallest eigenvalue � of the array as the array’s size goes to infinity. What value
does �n2 approach? Hint: It’s the square of an important number. This is related
to operator theory: the second derivative operator has this eigenvalue in certain
cases.

Other Sparse Commands
One important method of sparse array objects is the nonzero() method, which is
related to the number of nonzero entries in an array. This number is important
because it is an indicator of the amount of time and space that is required to
operate on the sparse array. You should be aware that there is some overhead to
using and storing the sparse array data structure. Sparsely represented arrays are
very beneficial when the number of nonzero entries is relatively small compared to
the total number of entries. When the array has many nonzero entries, a sparse
representation becomes disadvantageous. To see this, create and execute a script
with the following code:

: A = sp.rand (600 ,600); B = spar.csc_matrix(A)

: def square(A): return sp.power(A, 2)

: with timer() as t:

....: t.time(square , A)

....: t.time(square , B)

Run the script and note the two di↵erent runtimes. Notice that it takes much
longer to square the sparse array. This is because the sparse array data structure is
optimized for arrays that are actually sparse. The array A is entirely nonzero. Thus,
you incur the overhead of the sparse array representation without any benefits since
there are no entries you are not required to store or compute. To summarize, only
use a sparse array when your array is in fact sparse. Using sparse arrays for mostly
nonzero arrays will negatively impact performance and memory requirements.
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Just as with dense arrays, we can pre-allocate sparse arrays. Sometimes it is
necessary to create sparse matrices that do not have a nice banded pattern. We
initialize a sparse array just like any other array. The most e�cient sparse array for
pre-allocation is LIL. Once you are done constructing you sparse array and wish to
perform calculations, you should convert to a more e�cient sparse array (CSR or
CSC).

: Z = spar.lil_matrix ((400 ,300))

<400x300 sparse matrix of type ’<type ’numpy.float64 ’>’

with 0 stored elements in LInked List format >

: Z[1 ,34] = 23

: Z[23 ,32] = 56

: Z[2,:] = 13.2

This code snippet creates a 400 ⇥ 300 LIL sparse array. We can then work
with the sparse array as though it were a dense array. When the array is initialized
all of the entries are assumed to be zero.



Lab 6

Applications: Markov
Chains I

Lesson Objective: This section teaches about two simple applications of Linear
Algebra. First it teaches about Markov Chains, which in this context represent
discrete random transitions. Second it teaches about Graph Theory, which can be
used to represent many physical problems.

Markov Chains
AMarkov Chain describe a particular type of random variable. This type of random
variable is characterized by the fact that all relevant information is related to its
current state. We can easily model this type of random variable using matrices. We
will start with a canonical example of a frog jumping from one lilypad to another.

Fredo the Frog hops around between the three lily pads A, B, and C. If he’s
on lily pad A and jumps, there is a 25% chance that he will land back on lily pad
A, a 25% chance that he will land on lily pad B, and a 50% chance that he will
land on lily pad C. In Figure ‘2.1, we have a transition diagram that reflects the
various probabilities from which Fredo will go from one lily pad to another.

We can convert our transition diagram into a transition matrix, where the
(i, j)-entry of the matrix corresponds to the probability that Fredo jumps from the
jth lily pad to the ith lily pad (where of course A is the first lily pad, B is the
second, and so on). In Fredo’s case, the transition matrix is

A =

0

@
1/4 1/2 1/2
1/4 1/6 1/2
1/2 1/3 0

1

A

Note that all of the columns add up to one. This is important.
If Fredo is on lily pad A, where will he be after two jumps? By multiplying

the matrix A by itself, we have (approximately)

49
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Figure 6.1: Transition diagram for Fredo the Frog

A2 =

0

@
0.4375 0.3750 0.3750
0.3542 0.3194 0.2083
0.2083 0.3056 0.4167

1

A

From this, we infer that there is a 43.75% chance he will still be on lily pad A
after two jumps. Note that he might have jumped from A to A to A, denoted
A ! A ! A, or he could have jumped to one of the other lily pads and then back
again, that is, either A ! B ! A or A ! C ! A. In addition, there is a 35.42%
chance he will be on lily pad B and a 20.83% chance that he will be on lily pad C.
Using Python, we can type in our transition matrix and see where Fredo will be
after 5, 10, 20 or 100 jumps.

#Remember , the 1.’s in the numerator force floating point division

: A = sp.array ([[1./4 ,1./2 ,1./2] ,[1./4 ,1./6 ,1./2] ,[1./2 ,1./3 ,0]])

: np.linalg.matrix_power(A,5)

: np.linalg.matrix_power(A,10)

: np.linalg.matrix_power(A,20)

: np.linalg.matrix_power(A,100)

Note that in the limit that the number of jumps goes to infinity, we get

A1 =

0

@
0.4 0.4 0.4
0.3 0.3 0.3
0.3 0.3 0.3

1

A

This means that after several jumps, the probability that we will find Fredo on a
given lily pad will have nothing to do with where he started initially.



51

Markov Chains
We can generalize this notion beyond that of frogs and lily pads. Let the state of
our system be represented by a probability vector

x =

2

6664

x1

x2
...
xn

3

7775

where each entry represents the probability of being in that state. Note that each
entry is nonnegative and the sum of all the entries adds up to one. For example,
in the case of Fredo, if we know initially that he is on lily pad A, then we have the
state vector

x0 =

2

4
1
0
0

3

5

because we know for certainty (100%) that Fredo is in the first state. After one
jump, we have

x1 = Ax0 =

2

4
0.25
0.25
0.50

3

5

After two jumps, we have

x2 = Ax1 = A2x0 =

2

4
0.4375
0.3542
0.2083

3

5

After a large number of jumps (n >> 1), we have

xn = Axn�1 = · · · = Anx0 ⇡

2

4
0.4
0.3
0.3

3

5

Since all of the columns are the same for A1, then for any initial probability vector
x0, we get the same limiting output, or in other words, all initial vectors converge
to the same point, call it x1. Moreover, we have that

x1 = Ax1

This is called a stable fixed point. How can we check that a stable fixed point
exists? Hint: Think eigenvalues and eigenvectors.

Example
Consider the Markov chain given by

A =

0

@
0.5 0.3 0.4
0.2 0.2 0.3
0.3 0.5 0.3

1

A .
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We show that it has a stable fixed point by checking that it has a single eigenvalue
� = 1. We do this via Python:

: A = sp.array ([[.5 ,.3 ,.4] ,[.2 ,.2 ,.3] ,[.3 ,.5 ,.3]])

: V = la.eig(A)[1]

Note that the entries in the � = 1 eigenvector do not generally add up to one.
Indeed, any multiple of an eigenvector is an eigenvector. So we need to multiply it
by the appropriate constant so that all of the entries add up to one.

: x = V[:,0]

: x = x/sp.sum(x);x

array([ 0.41836735 , 0.23469388 , 0.34693878])

We can check this answer by taking A to a high exponent, say A100.

Problem 1 Suppose a basketball player’s success at shooting free throws can be
described with the following Markov chain

A =

✓
.75 .50
.25 .50

◆

where the first state corresponds to success and the second state to failure.

1. If the player makes his first free throw, what is the probability that he also
makes his third one?

2. What is the player’s average free throw percentage?

Problem 2 Consider the Markov process given by the transition diagram in Figure
2 below:

1. Find the transition matrix.

2. If the Markov process is in state A, initially, find the probability that it is in
state B after 2 periods.

3. Find the stable fixed point if it exists.
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Figure 6.2: Transition diagram

Graph Theory

Graph theory is an important branch of mathematics and computer science.
It describes how objects are connected to one another. In a rigorous sense, a graph
is composed of two sets: a set of nodes and a set of edges that connect these nodes.

A graph is directed if connections are uni-directional, and undirected if they
are bi-directional. The above graphic shows an undirected graph. We can write a
matrix that describes this type of graph. We let each row of our matrix represent
our starting point and each column represent our destination. We put a 1 if there
is a path and a 0 if there is not. For the above graph we generate the following
matrix:

A =

0

BBBBBB@

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

1

CCCCCCA
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This matrix is called an adjacency matrix. Note that this matrix is symmetric,
since the graph is undirected.

What happens if we square an adjacency matrix? It turns out that raising an
adjacency matrix to the n power yields the number of paths of length n between
two vertices. For example by squaring the above matrix Python gives:

: np.linalg.matrix_power(A,2)

array ([[2, 1, 1, 1, 1, 0],

[1, 3, 0, 2, 1, 0],

[1, 0, 2, 0, 2, 1],

[1, 2, 0, 3, 0, 0],

[1, 1, 2, 0, 3, 1],

[0, 0, 1, 0, 1, 1]])

Now try to find the number of connections of length 6 from node 3 to itself.
This is simple to do in Python:

: np.linalg.matrix_power(A,6)

array ([[45, 54, 38, 45, 54, 16],

[54, 86, 29, 77, 51, 11],

[38, 29, 55, 15, 70, 27],

[45, 77, 15, 75, 31, 4],

[54, 51, 70, 31, 93, 34],

[16, 11, 27, 4, 34, 14]])

It turns out that there are 55 unique paths of length 6 from node 3 to itself. Imagine
trying to count all of those paths by hand! It would be very easy to count incorrectly.
However, this method makes it very simple to count paths without any mistakes.

Problem 3 Let the following matrix represent a directed graph

A =

0

BBBBBBBB@

0 0 1 0 1 0 1
1 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 0

1

CCCCCCCCA

The greatest number of paths of length five are from which node to each node?
From which node to which node is their no path of length seven?

The astute reader may ask now why this matters. It turns out that the
study of graphs and connectivity have many important applications. For example,
connections between web pages can be described as graphs. So can flights between
airports or friends on social networking sites. The same ideas are applied frequently
in computer chip design and in the preservation of endangered species. We will
explore one surprising application to chemistry.
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Remeber the bucky array we explored in chapter one? The graph that this
matrix represents is a graph for a geodesic dome, which has structure almost iden-
tical to certain types of carbon atoms. Understanding the graphs of certain types
of molecules allows scientists to better understand the structure of the molecule,
making identification and manipulation easier.

We will manipulate the matrix the bucky to simulate the types of analysis a
scientist could do on a complex carbon atom. For our purposes, each column and
row of the bucky matrix represents an atom in our molecule, and connections are
chemical bonds from one atom to another.

Problem 4 Find the number of connections between atoms in our molecule(the
command sp.count_nonzero may be useful). Then find the number of atoms that
are connected by paths of length two. Three? At what path length are all of the
atoms connected? A nifty way to visualize this is the plt.spy command. Read
the documentation for plt.spy and then use plt.spy to visualize how the graph is
connected at path length one, two, four and ten. Remember, to load ‘‘bucky.csv’’

into an array use the command bucky = sp.loadtxt ( "bucky.csv", delimiter = ",").
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Algorithms:
RREF/Elementary
Matrices

Lesson Objective: In this section we will use elementary matrices to find the
RREF and to find the LU decomposition.

In Linear algebra there are 3 elementary row operations: switching two rows,
multiplying a row by a constant, and adding a multiple of one row to another row.
We carry out each of these operations with a corresponding elementary matrix.
These matrices are easy to construct. Suppose A is an m ⇥ n matrix and you
want to perform one of the three elementary operations on A. You can do this be
constructing the m⇥m identity matrix, I, performing the elementary row operation
on I to obtain E and then multiplying EA. For example, consider the matrix

A =

0

@
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

1

A

If we want to swap the first two rows, we can left multiply the matrix A by:

E =

0

@
0 1 0
1 0 0
0 0 1

1

A ,

then

EA =

0

@
a21 a22 a23 a24
a11 a12 a13 a14
a31 a32 a33 a34

1

A .

E in this case is called a type I matrix.
Now let’s examine the next row operation. If we want to multiply, say, the

second row of A by the constant b, we can left multiply the matrix A by the following

57
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matrix:

Ẽ =

0

@
1 0 0
0 b 0
0 0 1

1

A .

Then

ẼA =

0

@
a11 a12 a13 a14
ba21 ba22 ba23 ba24
a31 a32 a33 a34

1

A .

Ẽ is called a type II matrix.
Now let’s examine the last row operation. If we want to multiply, say, the first

row of A by a constant c and add it to the second row, we can left multiply the
matrix A by the following matrix:

bE =

0

@
1 0 0
c 1 0
0 0 1

1

A .

Then

bEA =

0

@
a11 a12 a13 a14

ca11 + a21 ca12 + a22 ca13 + a23 ca14 + a24
a31 a32 a33 a34

1

A .

bE is called a type III matrix.
Below, the elementary matrices corresponding to each row operation is imple-

mented in Python.

1 from scipy import eye

2

def rowswap(n, j, k):

4 """ Swaps two rows

6 INPUTS: n -> matrix size

j, k -> the two rows to swap """

8 out = eye(n)

out[j,j]=0

10 out[k,k]=0

out[j,k]=1

12 out[k,j]=1

return out

14

def cmult(n, j, const):

16 """ Multiplies a row by a constant

18 INPUTS: n -> array size

j -> row

20 const -> constant """

out = eye(n)

22 out[j,j]= const

return out

24

def cmultadd(n, j, k, const):

26 """ Multiplies a row (k) by a constant and adds the result to

another row (j)"""



59

out = eye(n)

28 out[j,k] = const

return out

row opers.py

Programming Row Reduction
A fundamental problem in linear algebra is using matrix representations to solve
systems of linear equations. In this section, we do this by using elementary matrices
to reduce a matrix into “row echelon form” (REF), as opposed to “reduced row
echelon form” (RREF). We remark that to solve a linear system, it is actually
faster computationally to use REF and then finish with back-substitution, than it
is to use RREF. Consider the following matrix:

0

@
4 5 6 3
2 4 6 4
7 8 0 5

1

A

By iteratively left multiplying by elementary matrices, we can reduce as fol-
lows:

Remember that our functions returns the elementary array corresponding to
the desired row operation. Also note that setting the type of our initial array is
crucial.

: import scipy as sp

: import row_opers as op

: A = sp.array ([[4, 5, 6, 3],[2, 4, 6, 4],[7, 8, 0, 5]], dtype=’

float32 ’)

array ([[ 4., 5., 6., 3.],

[ 2., 4., 6., 4.],

[ 7., 8., 0., 5.]], dtype=float32)

: A1 = sp.dot(op.cmultadd (3,1,0,-A[1 ,0]/A[0 ,0]), A); A1

array ([[ 4. , 5. , 6. , 3. ],

[ 0. , 1.5, 3. , 2.5],

[ 7. , 8. , 0. , 5. ]])

: A2 = sp.dot(op.cmultadd (3,2,0,-A1[2 ,0]/A1[0 ,0]), A1); A2

array ([[ 4. , 5. , 6. , 3. ],

[ 0. , 1.5 , 3. , 2.5 ],

[ 0. , -0.75, -10.5 , -0.25]])

: A3 = sp.dot(op.cmultadd (3,2,1,-A2[2 ,1]/A2[1 ,1]), A2); A3

array ([[ 4. , 5. , 6. , 3. ],

[ 0. , 1.5, 3. , 2.5],

[ 0. , 0. , -9. , 1. ]])

To complete REF we would need to divide each row by its leading coe�cient.
We can do that using Type II matrices. We leave it to you to carry this out.
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Problem 1 Write a Python function, which takes as input an n⇥(n+1) matrix (in
other words and augmented matrix) and performs the above naive row reduction to
REF using elementary matrices. (You do not need to worry about underdetermined
matrices or getting zeros on the main diagonal)

LU Decomposition
Again, consider the matrix A. By iteratively left multiplying by Type 3 elementary
matrices, we reduce as follows:

: E1 = op.cmultadd (3,1,0,-A[1 ,0]/A[0 ,0]); E1

array ([[ 1. , 0. , 0. ],

[-0.5, 1. , 0. ],

[ 0. , 0. , 1. ]])

: B1 = sp.dot(E1, A)

array ([[ 4. , 5. , 6. , 3. ],

[ 0. , 1.5, 3. , 2.5],

[ 7. , 8. , 0. , 5. ]])

: E2 = op.cmultadd (3,2,0,-B1[2 ,0]/B1[0 ,0])

: B2 = sp.dot(E2, B1)

: E3 = op.cmultadd (3,2,1,-B2[2 ,1]/B2[1 ,1])

: U = sp.dot(E3, B2); U

array ([[ 4. , 5. , 6. , 3. ],

[ 0. , 1.5, 3. , 2.5],

[ 0. , 0. , -9. , 1. ]])

Note that we have reduced the above matrix into upper-triangular form, denoted
as U . Hence, we have

U = E3E2E1A.

Since the elementary matrices are invertible, we also have

(E3E2E1)
�1U = A.

This can be re-written as
E�1

1 E�1
2 E�1

3 U = A.

Then we define L to be
L = E�1

1 E�1
2 E�1

3 ,

which yields LU = A.

: from scipy import linalg as la

: I = lambda x: la.inv(x)

: L = sp.dot(sp.dot(I(E1), I(E2)), I(E3)); L

array ([[ 1. , 0. , 0. ],

[ 0.5 , 1. , 0. ],

[ 1.75, -0.5 , 1. ]])

: sp.dot(L, U)

array ([[ 4., 5., 6., 3.],

[ 2., 4., 6., 4.],

[ 7., 8., 0., 5.]])
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What makes LU decomposition so easy is that the inverses of elementary matrices
are elementary matrices. For example, the inverse of a Type 3 elementary matrix
is the same matrix with the opposite sign in the (j, k) entry. In the above problem,
we have: Note that the minus signs are gone. Doing it this way, we don’t have to
actually invert anything to compute L. This makes the computation much faster.

Why Should I Care?
The LU Decomposition isn’t very useful when doing matrix computation by hand.
It is, however, very important in scientific computation for the following reasons:

• If you want to solve the matrix equation Ax = b, for several di↵erent b0s,
you can replace A with L and U , giving LUx = b. Then solve the equations
Ly = b and Ux = y, using forward and backward substitution, respectively.
This is actually faster than solving them with row reduction.

• The LU decomposition allows quick computation of both inverses and deter-
minants.

• For very large matrices the LU decomposition is crucial. Indeed one can
perform the LU decomposition on a given matrixA without needing additional
space, that is, the program actually over-writes A with L and U . Note that
since the diagonal of L are all ones, they don’t need to be stored, and so
the upper diagonal (including the diagonal) is U and the lower diagonal (not
including the diagonal) is L.

Problem 2 Write a Python function which takes as input a random n⇥n matrix,
performs the LU decomposition and returns L and U . To verify that it works,
multiply L and U together and compare to A. Note: you should not use the inv

function when you do this. You should only use the elementary matrices that
we just created. Additionally, have your function count the number of operations
needed to perform the LU decomposition.

Problem 3 Write a Python function which uses the solution to Problem 2 to find
the determinant of A.


