
Applied Mathematics

and

Computing

Volume I



2



List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i



ii List of Contributors



Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/


Lab 9

Algorithms: Modified
Gram-Schmidt (QR)

Lesson Objective: Understand how the QR algorithm works and write your own
implementation.

The QR decomposition is used to represent any matrix as the multiple of an
orthogonal matrix and an upper triangular matrix. This decomposition is useful in
computing least squares and is part of a common method for finding eigenvalues.

Review of Gram Schmidt

Theorem 9.1 (Gram-Schmidt Orthogonalization Process). Let {xi}ni=1 be
a basis for the inner product space V . Let

q1 =
x1

kx1k
,

and define q2,q3, . . . ,qn recursively by

qk+1 = xk+1 �
kX

j=1

hxk+1,qji
kqjk2

qj ,

the sum term is a projection of xk+1 onto the subspace Span(q1,q2, . . . ,qk).
Then the set {qi}ni=1 is an orthonormal basis for V .

For the above algorithm, let rjk = hxk,qji when j  k. Then

r11q1 = x1

rkkqk = xk � r1kq1 � r2kq2 � r3kq3 � . . .� rk�1,kqk�1, k = 2, . . . , n.

69



70 Lab 9. QR decomposition

This can be written as

x1 = r11q1

x2 = r12q1 + r22q2

... =
...

xn = r1nq1 + r2nq2 + . . .+ rnnqn,

or in matrix form as

0

BB@

...
...

...
x1 x2 · · · xn

...
...

...

1

CCA =

0

BB@

...
...

...
q1 q2 · · · qn

...
...

...

1

CCA

0

BBB@

r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn

1

CCCA
.

Hence if our original basis {xi}ni=1 correspond to column vectors of a matrix A, we
can likewise write the resulting orthonormal basis {qi}ni=1 as a matrix Q of column
vectors. Then we have that A = QR, where R is the above nonsingular upper-
triangular n⇥ n matrix. This is the QR Decomposition and is summarized by the
following theorem:

Theorem 9.2. Let A be an m⇥ n matrix of rank n. Then A can be factored into
a product QR, where Q is an m ⇥ n matrix with orthonormal columns and R is a
nonsingular n⇥ n upper triangular matrix.

There are three mode options available in SciPy’s implementation of QR De-
composition. We will be using the “economic” option.

: import scipy as sp

: from scipy import linalg as la

: A = sp.randn (4,3)

: Q, R = la.qr(A, mode=’economic ’)

: sp.dot(Q, R) == A there will be some False entries

: sp.dot(Q, R) - A

: sp.dot(Q.T, Q)

In order to interpret the results correctly, we need to understand that the
computer has limited precision (especially with floating point numbers). This is
why sp.dot(Q, R) is not exactly equal to A. But subtracting the two yields numbers
that are essentially zero. This shows that indeed the product of Q and R is A. Note
also that QTQ = I. This implies that the column vectors of Q are orthonormal
(why?).

Solving Least Squares Problems
For large or ill-conditioned problems, the QR decomposition provides a nice method
for computing least squares solutions of over-determined matrices. Consider the



71

problem Ax = b. Recall that the least squares solution is bx = (ATA)�1AT b.
Alternatively, we write the linear system as

QRx = b.

We then multiply both sides by QT , yielding

Rx = QT b.

Then bx = R�1QT b.

Computational Remark
Numerically, the Gram Schmidt process can have problems due to finite precision
arithmetic. Specifically, due to rounding errors, the resulting basis may not be
orthonormal. To combat this, we actually carry out a slightly revised algorithm
called Modified Gram Schmidt. To do this, we compute q1 as before. We then
project it out of each of the remaining original vectors x2,x3, . . . ,xn via

xk := xk � hxk,q1iq1, k = 2, . . . , n.

Then we compute q2 to be the unit vector of x2, that is,

q2 =
x2

kx2k
.

We repeat by projecting out q2 from the remaining vectors x3,x4, . . . ,xn.

Problem 1 Write your own implementation of the QR decomposition. It should
accept as input a matrix A and computes its QR decomposition, returning the
matrices Q and R. Be sure to use the numerically stable Modified Gram Schmidt
algorithm.



72 Lab 9. QR decomposition



Lab 10

Applications:
Least-squares fitting I
(Stats2)

Lesson Objective: This section will introduce a more advanced application of
Least Squares: fitting data to an circle.

Fitting data to a circle
Recall that the equation of a circle, with radius r centered at (c1, c2), is given by

(x� c1)
2 + (y � c2)

2 = r2. (10.1)

Suppose we are given a set of data points closely forming a circle {(xi, yi)}ni=1. The
“best” fit is found via least squares by expanding (10.1) to get

2c1x+ 2c2y + c3 = x2 + y2,

where c3 = r2 � c21 � c22. Then we can write the linear system Ax = b as
0

BBB@

2x1 2y1 1
2x2 2y2 1
...

...
...

2xn 2yn 1

1

CCCA

0

@
c1
c2
c3

1

A =

0

BBB@

x2
1 + y21

x2
2 + y22
...

x2
n + y2n

1

CCCA
,

where the matrix A and the vector b are obtained by the given data and the unknown
x contains the information about the center and radius of the circle and is obtained
by finding the least squares solution.

Example
In this section, we fit the following points to a circle:

(134, 76), (104, 146), (34, 176), (�36, 146),

(�66, 76), (�36, 5), (34,�24), (104, 5), (134, 76)

73



74 Lab 10. Least-squares fitting I

We enter them into Python as a 9⇥ 2 array:

: P = sp.array ([[134 ,76] ,[ 104 ,146] ,[ 34 ,176] ,[ -36,146],[ -66,76],[

-36,5],[ 34,-24],[ 104,5],[ 134 ,76]])

Then we can separate the x and y coordinates by the commands P[:,0] and P[:,1],
respectively. Hence, we compute A and b by entering the following:

: A = sp.column_stack ((2*P,sp.ones ((9 ,1),dtype=sp.int_)))

: b = P[: ,0]**2 + P[: ,1]**2

Hence, we get the least squares solution

: x = sp.dot(sp.dot(la.inv(sp.dot(A.T,A)),A.T),b)

Then we find c1, c2, and r by:

: c1 = x[0]

: c2 = x[1]

: c3 = x[2]

: r = sp.sqrt(c1**2 + c2**2 + c3)

We plot this by executing

: theta = sp.linspace (0,2*sp.pi ,200)

: plt.plot(r*sp.cos(theta)+c1 ,r*sp.sin(theta)+c2 ,’-’,P[:,0],P[:,1],’*’

)

: plt.show()

Problem 1 Download the file lab10.txt from the following link: http://www.

math.byu.edu/

~

jeffh/teaching/m343h/lab10.txt You can load this datafile into
Python by typing

: lab10 = sp.genfromtxt("lab10.txt")

Now the data is available in the matrix lab10. This consists of two columns corre-
sponding to the x and y values of a given data set. Use least squares to find the
center and radius of the circle that best fits the data. Then plot the data points
and the circle on the same graph. Finish o↵ the problem with a discussion of what
you’ve learned.

Problem 2 The general equation for an ellipse is:

A(x� x0)
2 +B(x� x0)(y � y0) + C(y � y0)

2 = 1

Write a program that uses least squares to fit data to an ellipse. One option
to finding the center point (x0, y0) is to use the mean function. Test the program

http://www.math.byu.edu/~jeffh/teaching/m343h/lab10.txt
http://www.math.byu.edu/~jeffh/teaching/m343h/lab10.txt


75

on lab10. Also test it against sp.dot(lab10,sp.array([[2,0],[0,1]]) ) . Plot the result.
How well does your function work?



76 Lab 10. Least-squares fitting I



Lab 11

Algorithms: QR
Decomposition
(Householder)

Lesson Objective: Use orthogonal transformations to perform QR decomposi-
tion.

Orthogonal transformations
Recall that a matrix Q is unitary if Q⇤Q = I or for real matrices, QTQ = I
(since the conjugate of a real number is itself). We like unitary transformations
because they’re very numerically stable. The number (A) = kAk

��A�1
�� is called

the condition number of A. We’ll discuss condition number more in Lab ??; for
now, all you need to know is that if (A) is small, then problems involving A are
less susceptible to numerical errors. For induced matrix norms (which include most
of the matrix norms we would ever care about), it holds that kQk = 1 when Q is
unitary. The inequality kABk  kAk kBk also holds for these norms. It follows that
(A) = kAk

��A�1
�� �

��AA�1
�� = kIk = 1. Note that if Q is unitary, Q�1 = Q⇤ and

Q⇤ is also unitary, so (Q) = kQk kQ⇤k = 1. This means that orthogonal matrices
have the smallest possible condition number, which is great!

Any unitary matrix Q can be described as a reflection, a rotation, or some
combination of the two. If det(Q) = 1, then Q is a rotation; if det(Q) = �1, then
Q is the composition of a reflection and a rotation. Let’s explore these two types of
unitary transformations and some of their applications. We will focus on the real
case to simplify matters.

Householder reflections
A Householder reflection is a linear transformation P : Rn ! Rn that reflects a
vector x about a hyperplane. See figure 11.1. Recall that a hyperplane can be
defined by a unit vector v which is orthogonal to the hyperplane. As shown in the
figure, x�hv, xiv is the projection of x onto the hyperplane defined by v. (You should

77



78 Lab 11. Canonical Transformations and the QR Decomposition

Figure 11.1: Householder reflector

verify this geometrically.) However, to reflect across the hyperplane, we must move
twice as far; that is, Px = x�2hv, xiv. This can be written Px = x�2v(v⇤x), so P
has matrix representation P = I � 2vv⇤. Note that P ⇤P = I; thus P is orthogonal.

Householder triangularization

Consider the problem of computing the QR decomposition of a matrix A. You’ve
already learned the Gram-Schmidt and the Modified Gram-Schmidt algorithms for
this problem. The QR decomposition can also be computed using Householder tri-
angularization. Gram-Schmidt and Modified Gram-Schmidt orthogonalize A by a
series of triangular transformations. Conversely, the Householder method triangu-
larizes A by a series of orthogonal transformations.

Let’s demonstrate this method on a 4⇥3 matrix A. First we find a orthogonal
transformation Q1 that maps the first column of A into the range of e1 (where e1
is the vector where the first element is one and the remander of the elements are
zeros).



79

0

BB@

⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

1

CCAQ1�!

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

1

CCA

Let A2 be the boxed submatrix of A. Now find an orthogonal transformation Q2

that maps the first column of A2 into the range of e2.

0

@
⇤ ⇤
⇤ ⇤
⇤ ⇤

1

AQ2�!

0

@
⇤ ⇤
0 ⇤
0 ⇤

1

A

Similarly,

✓
⇤
⇤

◆
Q3�!

✓
⇤
0

◆
. (Technically Q2 and Q3 act on the whole matrix and not

just on the submatrices, so that Qi : Rn ! Rn for all i. Q2 leaves the first row
alone, and Q3 leaves the first two rows alone.) Then Q3Q2Q1A =

Q3Q2Q1

0

BB@

⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

1

CCA = Q3Q2

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

1

CCA = Q3

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 0 ⇤
0 0 ⇤

1

CCA =

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 0 ⇤
0 0 0

1

CCA

We’ve accomplished our goal, which was to triangularize A using orthogonal
transformations. But now, how do we find the Qi that do what we want? Using
Householder reflections. (Surprise!)

For example, to find Q1, we choose the right hyperplane to reflect x into the
range of e1. It turns out there are two hyperplanes that will work, as shown in figure
11.2. (In the complex case, there are infinitely many such hyperplanes.) Between
the two, the one that reflects x further will be more numerically stable. This is
the hyperplane perpendicular to v = sign(x1) kxk2 e1 + x. The whole process is
summarized in Algorithm 11.0.1.

Algorithm 11.0.1: Householder triangularization(A)

m,n size(A)
for k  1 to n� 1

do

8
>>>>>><

>>>>>>:

x = Ak:m,k

vk = sign(x1) kxk2 e1 + x
vk = vk/ kvkk2
Pk = eye(m,m)
Pk[k : m, k : m] = Pk[k : m, k : m]� 2vkvTk
A = sp.dot(Pk, A);

This algorithm returns upper triangular R. You can find Q s.t. QR = A by
multiplying the Pk together appropriately.



80 Lab 11. Canonical Transformations and the QR Decomposition

Figure 11.2: two reflectors

Problem 1 Write a script using Householder reflections to find the QR decompo-
sition of a matrix A.

Stability of the Householder QR algorithm

Try the following in Python.

In [1]: import scipy as sp

In [2]: import numpy.linalg as la

In [3]: import my_householder

In [4]: Q,X = la.qr(sp.rand (50 ,50)) #create a random orthogonal

matrix:

In [5]: R = sp.triu(sp.rand (50 ,50)) # create a random upper

triangular matrix

In [6]: A = sp.dot(Q,R) #Q and R are the exact QR decomposition of A

# use your Householder QR script to estimate Q and R:

In [7]: Q1,R1 = my_householder.qr(A)

#now check the relative errors of Q1 and R1

In [8]: la.norm(Q1-Q)/la.norm(Q)

Out [8]: 0.282842955725



81

In [9]: la.norm(R1-R)/la.norm(R)

Out [9]: 0.0428922016647

This is terrible! Python works in 16 decimal points of precision. But Q1 and R1 are
only accurate to 0 and 1 decimal points, respectively. We’ve lost 16 decimal points
of precision!

Don’t lose hope. Check how close the product Q1R1 is to A.

In [10]: A1 = sp.dot(Q1,R1)

In [11]: la.norm(A1-A)/la.norm(A)

Out [11]: 9.73996046986e-16

We’ve now recovered 15 digits of accuracy. The errors in Q1 and R1 were somehow
“correlated,” so that they canceled out in the product. The errors in Q1 and R1

are called forward errors. The error in A1 is the backward error. The Householder
QR algorithm is a backward stable algorithm.

Householder QR factorization is more numerically stable than Gram-Schmidt
or even Modified Gram-Schmidt (MGS). However, MGS is still useful for some
types of iterative methods, because it finds the orthogonal basis one vector at a
time instead of all at once (for example see Lab 15).

Upper Hessenberg Form

An upper Hessenberg matrix is a square matrix with zeros below the first subdi-
agonal. Every n ⇥ n matrix A can be written A = QTHQ where Q is orthogonal
and H is an upper Hessenberg matrix, called the Hessenberg form of A. Note the
similarity of this decomposition to the Schur decomposition in Lab 35.

The Hessenberg decomposition can be computed using Householder reflec-
tions, in a process very similar to Householder triangularization. Let’s demonstrate
this process on a 5⇥5 matrix A. Note that A = QTHQ is equivalent to QAQT = H;
thus our strategy is to multiply A on the right and left by a series of orthogonal
matrices until it is in Hessenberg form. If we try the same Q1 as in the first step of
the Householder algorithm, then with Q1A we introduce zeros in the first column of
A. However, since we now have to multiply Q1A on the left by QT

1 , all those zeros
are destroyed, as demonstrated below. (Although this process may seem futile now,
it actually does tend to decrease the size of the subdiagonal entries. If we repeat it
over and over again, the subdiagonal entries will often converge to zero. That’s the
idea behind the QR algorithm in Lab 15.)

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA
Q1·�!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA
·QT

1��!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA

A Q1A Q1AQT
1

Instead, let’s try starting with a di↵erent Q1 that leaves the first row alone and
reflects the rest of the rows into the range of e2. This means that QT

1 leaves the



82 Lab 11. Canonical Transformations and the QR Decomposition

first column alone.
0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA
Q1·�!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA
·QT

1��!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA

A Q1A Q1AQT
1

We now iterate through the matrix until we obtain

Q3Q2Q1AQT
1 Q

T
2 Q

T
3 =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 0 ⇤ ⇤ ⇤
0 0 0 ⇤ ⇤

1

CCCCA

Problem 2 Write a script that transfers an input matrix to upper Hessenberg
form. (Hint: You only need to modify your code code from problem 1 slightly.) We
will use this technique in the eigenvalue lab later.



Lab 15

Algorithms: Eigenvalue
Solvers

Lesson Objective: Implement the QR algorithm for finding eigenvalues.

Eigenvalues are hard to find
Finding the eigenvalues of n ⇥ n matrix A means solving the following equation,
where x is a nonzero vector and � is a scalar.

Ax = �x

Ax� �x = 0

(A� �I)x = 0 (15.1)

Since x is nonzero, (15.1) means A � �I must be singular. Thus det(A � �I) = 0.
This determinant is often notated det(A��I) = p(�) and is called the characteristic
polynomial of A. The roots of the characteristic polynomial are the eigenvalues of
A.

If A is n ⇥ n, the degree of p(�) = n. Finding the roots is easy for small n,
but it becomes di�cult or impossible as n increases. Abel’s Theorem outlines the
problem.

Theorem 15.1. Abel’s Impossibility Theorem: There is no general algebraic
solution for solving a polynomial equation of degree n > 4.

Therefore, there is no method that will exactly find the eigenvalues of an
arbitrary matrix. This is a significant result. In practice it means that we often
rely on iterative methods, which converge to the eigenvalues.

99



100 Lab 15. Eigenvalue Solvers

The QR algorithm
There are many such iterative methods for finding eigenvalues. We will explore
one of the simplest: the QR algorithm. The following recurrence describes the QR
Algorithm in its most basic form.

A0 = A, Ak = QkRk, Ak+1 = RkQk

where Qk, Rk is the QR decomposition of Ak. Yes, it’s as easy as it looks. All
this algorithm does at each step is find the QR decomposition of Ak and multiply
Qk and Rk together again but in the opposite order. How does this simple algorithm
find the eigenvalues of A?

Ak+1 ⇠ Ak (where ⇠ denotes matrix similarity). Then An ⇠ A for all n.
This statement shows that An has the same eigenvalues as A. Preservation of
eigenvalues is the first important feature that makes the algorithm work. The other
important feature is that each iteration of the algorithm e↵ectively transfers some
of the“mass” from the lower to the upper triangle. Under very general conditions,
An will converge to a matrix of the form

S =

0

BBBB@

S1 ⇤ · · · ⇤

0 S2
. . .

...
...

. . .
. . . ⇤

0 · · · 0 Sm

1

CCCCA
(15.2)

where Si is either a 1⇥ 1 or a 2⇥ 2 matrix. For most matrices A, all the Si will be
1 ⇥ 1, so S will be an upper triangular matrix. In this case, S is called the Schur
form of A. The eigenvalues of A are on the main diagonal of S.

The only case where S is not upper triangular is when A is a real but not
symmetric matrix. In this case, though A is real, it may have complex eigenvalues.
These eigenvalues occur in complex conjugate pairs. Each of these pairs corresponds
to a 2 ⇥ 2 block in S, where the eigenvalues of the 2 ⇥ 2 block are the complex
conjugate pair of eigenvalues of A. In this case, S is called the real Schur form of
A.

Hessenberg preconditioning

Recall from Lab ?? that an upper Hessenberg matrix looks like

0

BBBBB@

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
0 ⇤ ⇤ · · · ⇤
...

. . .
. . .

...
0 · · · 0 ⇤ ⇤

1

CCCCCA

and that every matrix is similar to an upper Hessenberg matrix. Hessenberg re-
duction also preserves eigenvalues. It is a good idea to reduce to Hessenberg form



101

before continuing with the QR algorithm. You’ll converge to the Schur form faster
this way, since Hessenberg matrices are already close to upper triangular.

Problem 1 Code the QR algorithm. Have your function accept an n⇥n matrix A
and a number of iterations, and return all the eigenvalues of A. Note that you will
need to find the eigenvalues of the 2⇥2 Si directly, if there are any. Since your own
implementations of QR decomposition and Hessenberg reduction may not handle
complex matrices, you should use the ones in scipy.linalg.

Problem 2 Test your implementation with random matrices. Try real, complex,
symmetric, and Hermitian matrices. Compare your output to the output from the
eigenvalue solver. How many iterations are necessary? How large can A be?

The QR algorithm is not the only iterative method used to find eigenval-
ues. Arnoldi iteration is similar to the QR algorithm but exploits sparsity. Other
methods include the Jacobi method and the Rayleigh quotient method.

It is important to remember that eigenvalue solvers can be wrong, particularly
for matrices that are ill-conditioned.



102 Lab 15. Eigenvalue Solvers



Lab 16

Applications: Image
Compression (SVD)

Lesson Objective: Explore the SVD as a method of image compression

The singular value decomposition is very useful. In this lab, we are going to
explore how the SVD can be used to compress image data. Recall that the SVD is a
decomposition of an m⇥n matrix A of rank r into the product A = U⌃V H , where
U and V are unitary matrices having dimensions m ⇥ m and n ⇥ n, respectively,
and ⌃ is an m⇥ n diagonal matrix

⌃ = diag(�1,�2, . . . ,�r, 0, . . . , 0)

where �1 � �2 � . . . � �r > 0 are the singular values of A. Upon closer inspection,
we can write

U =
�
U1 U2

�
, ⌃ =

✓
⌃r 0
0 0

◆
, V =

�
V1 V2

�
,

where U1 and V1 have dimensions m ⇥ r and n ⇥ r respectively and ⌃r is the
r ⇥ r diagonal matrix of (nonzero) singular values. Multiplying this out yields the
reduced form of the SVD

A =
�
U1 U2

�✓⌃r 0
0 0

◆✓
V H
1

V H
2

◆
= U1⌃rV

H
1

Low rank data storage

If the rank of a given matrix is significantly smaller than its dimensions, the reduced
form of the SVD o↵ers a way to store A with less memory. Without the SVD, an
m ⇥ n matrix requires storing m ⇤ n values. By decomposing the original matrix
into the SVD reduced form, U1, ⌃r and V1 together require (m ⇤ r) + r + (n ⇤ r)
values. Thus if r is much smaller than both m and n, we can obtain considerable
e�ciency. For example, suppose m = 100, n = 200 and r = 20. Then the original

103



104 Lab 16. SVD

matrix would require storing 20, 000 values whereas the reduces form of the SVD
only requires storing 6020 values.

Low rank approximation

The reduced form of the SVD also provides a way to approximate a matrix with
another one of lower rank. This idea is used in many areas of applied mathemat-
ics including signal processing, statistics, semantic indexing (search engines), and
control theory. If we are given a matrix A of rank r, we can find an approximate
matrix bA of rank s < r by taking the SVD of A and setting all of its singular values
after �s to zero, that is,

⌃ bA = �1,�2, . . . ,�s,�s+1 = 0, . . . ,�r = 0

and then multiplying the matrix back together again. The more singular values we
keep, the closer our approximation is to A. The number of singular values we decide
to preserve depends on how close of an approximation we need and what our size
requirements are for U1, ⌃ bA, and V1. Try plotting the the singular values. We have
plotted the singular values to the image below. Matrix rank is on the x-axis and the
eigenvalues are the y-axis. Note that SVD orders the singluar values from greatest
to least. The greatest eigenvalues contribute most to the image while the smallest
eigenvalues hardly contribute anything to the final approximation. By looking at
the graph we can have a rough idea of how many singular values we need to preserve
to have a good approximation of A. The matrix rank of the image below is 670.
However, as the plot shows, we could easily approximate the image using only the
first half of the singular values.



105

: import scipy as sp

: import numpy.linalg as nla

: A = sp.array

([[1 ,1 ,3 ,4] ,[5 ,4 ,3 ,7] ,[9 ,10 ,10 ,12] ,[13 ,14 ,15 ,16] ,[17 ,18 ,19 ,20]])

: nla.matrix_rank(A)

: U,s,Vt = nla.svd(A)

: S = sp.diag(s)

: Ahat = sp.dot(sp.dot(U[:,0:3], S[0:3 ,0:3]) , Vt[0:3 ,:])

: nla.matrix_rank(Ahat)

: nla.norm(A)-nla.norm(Ahat)

Note that bA is “close” to the original matrix A, but that its rank is 3 instead
of 4.

Application to Imaging

Enter the following into IPython (note that any image you might have will work):

: import matplotlib.pyplot as plt

: X = sp.misc.imread(’fingerprint.png’)[:,:,0]. astype(float)

: X.nbytes #number of bytes needed to store X

: sp.misc.imshow(X)

Computing the SVD of your image is simple. Remember to make the singluar values
a diagonal matrix before multiplying.

: U,s,Vt = la.svd(X)

: S = sp.diag(s)

In the next code block, n repsents the desired rank of the output.

: n=50

: u1, s1, vt1 = U[:,0:n], S[0:n,0:n], Vt[0:n,:]

: Xhat = sp.dot(sp.dot(u1 , s1), vt1)

: (u1.nbytes+sp.diag(s1).nbytes+vt1.nbytes) - X.nbytes #should be

negative



106 Lab 16. SVD

: sp.misc.imshow(Xhat)

Problem 1 A law enforcement agency has been needing to e�ciently store over
50,000 fingerprints. They have decided to use an SVD based compression algorithm.
Your job is to try several parameters for the SVD algorithm and recommend those
parameters that retain the highest quality but compress the most. There should be
no smearing or blocking in reconstructed final image and fingerprint detail must be
retained (otherwise the fingerprint is worthless). As part of your recommendation,
calculate how much memory would be needed on average to store each compressed
fingerprint. Expand your results to say how much space could be saved if the entire
database of fingerprints were compressed using your algorithm.


