Applied Mathematics

and

Computing

Volume |

List of Contributors

J. Humpherys

Brigham Young University
J. Webb

Brigham Young University
R. Murray

Brigham Young University
J. West

University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitzeff
Brigham Young University

List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

(©This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit
http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

(OMOM

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 23

Application: Newton’s
Method

Lesson Objective: Understand Newton’s Method

One important technique in technical computing is Newton’s method. The
goal of Newton’s method is to find 2* such that f(z*) = 0. This method is espe-
cially important in optimization, where our goal is to find minima and maxima of
functions. Newton’s method is an iterative method (much like eigenvalue finders:
remember how those provably have to be iterative?). Newton’s method, in one
dimension, is defined as follows:

Tpn+1 = Tn — f/(fE)
n

Essentially Newton’s method approximates a function by its tangent line, and
then uses the zero of the tangent line as the next guess for z,,.

Newton’s method is powerful because of the speed of convergence. In many
cases Newton’s method converges to the actual root quadratically, meaning that
the error term is squared at every iteration. This fast convergence makes it a very
powerful algorithm.

Newton’s method does suffer from the flaw that its convergence is dependent
upon an initial guess. If the initial guess is not sufficiently close the convergence can
be much slower, or may never occur. There are even certain pathological functions
for which newton’s method will never converge. However, these functions are very
rare, and as a rule Newton’s method converges very quickly.

Problem 1 Write a Newton’s method function that runs whether or not the user
inputs a derivative function. If the user gives a derivative function, use that. Other-
wise estimate the derivative numerically within the Newton’s method function. In
python this can be done by defining the derivative function as a keyword argument.

151

152 Lab 23. Newton's Method

-2 L
0.5 1 15 2

Figure 23.1: An illustration of how one iteration of Newton’s method works

Your function definition will look something like this def new_newton(f, x0, df=None,
t01=0.001)
Compare the performance of Newton’s method when you input the derivative
and when you don’t. How well does each converge? Which runs faster? Try the
following functions:

o cos(x)

o sin(1/z) * z2

o (sin(z)/x) —x

Problem 2 Test your newton’s method function on z!/3. Use random starting

points around zero. What do you see? Prove that for any non-zero starting point
that newton’s method will diverge.

Problem 3 A basin of attraction can be loosely defined as a set that will eventually
converge to a specific root. Pick random points on the interval [—2,2] as starting

153

points and apply newton’s method to the function 22 — 2z +1/2. Display the basins
of attraction for this particular function. What do you observe?

Problem 4 Extend your Newton’s method even further so that it will work on
systems of equations. Suppose that F' : R™ — R". The relevant equation is

Tiv1 =z — JLF(x;)

Note that you should not calculate the inverse Jacobian. sp.solve(4,b) gives you
the solution z to the equation Az = b. Use this fact to calculate J~'F from J and
F. You should be able to make this function work whether or not the user inputs
a Jacobian. This also means that you will have to implement your own jacobian
function.

154 Lab 23. Newton's Method

BYU-MCL Boot Camp
Optimization Labs
Professor Richard W. Evans

1 Introduction

Well defined systems of equations often do not have analytical solutions. However,
numerical solutions can also be difficult to find if the system is highly nonlinear,
involves many equations, has singularities, involves inequality constraints, or some
combination of these. The objective of these exercises is to familiarize you with some
of the different root finding and optimization routines available through Python and
specifically in the scipy.optimize library. You will learn some of the advantages and
limitations of each one. You will come away from this understanding that numerical
optimization involves a little bit of artistry and an intimate understanding of the
theory behind the equations you are optimizing.

2 Root finding

Let F (x) be a system of m functions of the vector x of length n, and the function
F (x) returns a vector of length m. The root of the function is the particular vector x
such that F (x) = 0, where 0 is an m-length vector of zeros. Because many economic
models are characterized by systems of equations, the roots of those systems are often
the solutions to economic models.

If a system of equations F (x) = 0 is linear, it can be represented as Ax —b =0
or Ax = b, where A is an m X n matrix, x is an n x 1 vector, b is an m x 1 vector,
and 0 is an m x 1 vector of zeros. This is the classical linear algebra problem in which
there may be many, exactly one, or no solution to the linear system Ax = b.

1. There is exactly one solution to Ax = b if A is square (n X n or m = n) and
has full rank, rank (A)) = n. This means A has n linearly independent rows and
A is invertible.

2. There are multiple solutions to Ax = b if rank (A) < n.
3. There is no solution to Ax = b if rank (A) > n.

If the system F (x) = 0 is nonlinear, the process of finding the roots is much less
straightforward. It often involves a Newton method and the evaluation of a gradient
or matrix of derivatives (Jacobian matrix).

Use the following description of the 3-period-lived agent, perfect foresight OLG
model from the first week of the course in order to complete Exercises 1 through 4
below. The decisions of the households in the economy can be summarized by the
following equations.

http://docs.scipy.org/doc/scipy/reference/optimize.html

(cre)™" = B+ 71101 — 0)(e241) 7 =0
(co) " = Bl 471141 —0)(c341) 7 =0
cry+kogp1 —wy =0

Cop + kgpy1 —wy — (141, —0)kge = 0
csp— (1+r,—08)ksy =0

w N

/N N N N N N
(G SN
N N e e S N

wt—(l—a)A(%)azo 6
Lt -«

re — A (E) =0 (7)

Ky —koy — k3 =0 (8)

L,—2=0 9)

If we substitute equations (3) through (9) into (1) and (2) and look only at the
steady-state, the steady-state values (kg, kg) are characterized by the following two
equations.

uf(w(zzg,zzg) - ;;2) — B(1+ r(ky, kg) — 8) x ...
' (w(ka, k) + [1 + 1(Rs, k) = 8Jk; — k) =0
o <w(/52,) + [1 4 (Ra, g) — 0ks — /2;3) .

11
B+ r ks, s) — 5)u’<[1 + 1 (koK) — 5]/;3) —0 "

Let the parameter vector values of the model be given by 6 = [5,7,«,d, A] =
[0.442,3,0.35,0.6415,1]. In Exercises 1 and 2, set the tolerance in the solver to
xtol=1e-10. Also, because some of the root finding methods in Exercise 2 do not
allow you to pass extra arguments into the root finding function, you will need to
define an anonymous function in addition to your steady-state distribution of capital
function. ksssolve is the function that I have defined for my root finding algorithm
to call to find the steady-state distribution of capital.

def ksssolve(kvec, params):
. # Define function to solve for steady-state distribution
. # of capital "kvec" given parameters vector "params"

For some of the root finders, like fsolve in Exercise 1, you can pass in many extra
arguments through the args=(params) syntax. However, two of the root finders in
Exercise 2 do not allow for extra arguments to be passed. So you’ll have to write an
anonymous function in Python to be an intermediate step between the root finding
command and the ksssolve function.

zero_func = lambda x: ksssolve(x, params)

For Exercises 1 and 2, you can write a root finding function syntax in the following
form,

import scipy.optimize as opt

kssvec = opt.[RootFinder] (zero_func, kinit, [meth=’method’], xtol=1le-10)

that calls the anonymous function zero_func, which passes both the guess for the
distribution of capital kinit and the parameters params to the ksssolve function,
regardless of whether £solve or the particular method of root allows extra argument
passing.

The last little examples of Python code I want you to use is the time library for
clocking computation speeds of different solution methods as well as some output
printing commands.

import scipy.optimize as opt
import time

Put all parameter and function definition code outside of timer
start_time = time.time()

kssvec = opt. [RootFinder] (zero_func, kinit, [meth=’method’], xtol=1e-10)
elapsed = time.time() - start_time

In order to have your script print the output that you want, you can use the
following code.

print (’The SS capital levels and comp. times for fsolve are:’)
print("k2ss_f = %.8f" % k2ss_f)

print ("k3ss_f = %.8f" % k3ss_f)

print("Time Elapsed: %.6f seconds" %, elapsed_f)

The % operator tells the print command that a string is going to be formatted. The
.8f and .6f commands tell the print command that the string following the second
7% character is to be displayed as a floating point number with 8 and 6 decimal places,
respectively, represented after the decimal.

Exercise 1. Solve for the steady-state distribution of capital savings (12:2, 1233) from
the three-period lived agent perfect foresight model described in (10) and (11) above
using the scipy.optimize.fsolve command. Report the computed steady-state
distribution of capital (/;:2, /;;3) and how long (in seconds) it took to compute.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve

Exercise 2. Solve for the same OLG steady-state distribution of capital savings
(Eg, l;:g) using the alternative root finding command scipy.optimize.root with each
of the following methods options: hybr, broydenl1, and krylov. One of these methods
will not work. Report the computed steady-state distribution of capital (/_fg, /2;3) for
each method and how long (in seconds) each one took to compute.

Exercise 3. What is the biggest difference between the solution from Exercise 1 and
diffegent solution methods in Exercise 2?7 That is, what is the biggest (k2, k3)ex1 —
(ka, k3)ex2i where i = {hybr, broydenl, krylov} among methods that worked?

Exercise 4. Which method had the minimum computation time and which method
had the maximum computation time among the method in Exercise 1 and the two
methods that worked in Exercise 2?7 [NOTE: You will get different computation times
each time you run this. But the relative computation speeds ordering will remain the
same.|

Each solver uses different methods and different coding approaches and efficiencies
to arrive at the solution. So it can sometimes be a significant task to find a solver
that works. Omnce you find a class of solvers that works, you may face a tradeoft
between robustness and computational speed. Another library of convex optimization
functions for Python that wraps the BLAS, LAPACK, FFTW, UMFPACK, CHOLMOD,
GLPK, DSDP5, and MOSEK routines is cvxopt.

3 Unconstrained optimization (minimization)

The characterizing equations or data generating process (DGP) in an economic model
often come from some set of optimization problems. In the case of the OLG prob-
lem from the first chapter of the course and the infinite horizon, representative agent
DSGE model from the second chapter, both households and firms are optimizing.
Although some economic problems do involve minimization decisions (e.g., cost min-
imization, loss function minimization), most focus on some type of maximization.
This begs the question of why the code libraries of all major programming languages
have only minimizers and not maximizers. First, any maximization problem can be
rewritten as a minimization problem. Second, a rewritten minimization problem that
must converge to a finite number like zero is easier than a problem that can go to co
or —o0.

The difference between a root finder and a minimizer is subtle but important.
And the take away should be that a minimizer is more complex and less exact than
a root finder, but more flexible. Let’s use the general system of equations F (x) = 0
discussed in Section 2. A root finder is finding a solution x that delivers the zero
vector 0. But a minimizer is finding the vector x that minimizes the scalar valued
function g(x). Note that you often want g(x) to map x into the nonnegative real line
so that the minimizing solution x sets g(x) as close to the scalar 0 as possible. One
very common example for the nonnegative scalar valued function g(x) is the sum of

m

2
the squares of the value of each individual equation in F (x): g(x) = > ", [E (X)} :
This minimizer is a least squares solution technique.

4

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
http://cvxopt.org/

Exercise 5. Solve for the steady-state distribution of capital savings (152, 153) from
the three-period lived agent perfect foresight OLG model described in (10) and (11)
in Section 2 above using the scipy.optimize.fmin minimizer command. Report
your solution and computation time.

[TODO: Insert exercise that changes the initial values.]

Unconstrained optimization (minimization) computational routines obviously are
the right choice when the range of the vector being chosen is unbounded. But uncon-
strained minimizers can also work well, as in Exercise 5, when the bounds are well
known and theoretical conditions (Inada conditions) push the solution away from the
boundary. Care must simply be taken to input good starting values.

Now we use the representative infinitely lived DSGE Brock and Mirman (1972)
model with inelatically supplied labor of [; = 1 in every period and known closed form
solution for the equilibrium policy function from the second chapter to illustrate the
value of a minimizer. I have characterized a very simple form of i.i.d. uncertainty
for the firm’s productivity shock in (19) to make computing the expectation in the
household’s problem easier, and the Brock and Mirman (1972) policy function is in
equation (18). The decisions of the representative household and the representative
firm in the economy can be summarized by the following equations.

(ct)" =BE [(1 + T — 5)(Ct+1)_7} (12)
c=w+ (1+r—0)k — ki (13)

wf41—@w(%ga (14)

L -
re = ae® (é) (15)
Kt — kt (16)
k’t+1 = ?,Zf(k't, Zt) = aﬁeztkta (18)
1 1
PI‘(Zt = —05) = 5 and PI'(Zt = 05) = 5 (19)

If we substitute equations (13) through (18) into (12), then the equilibrium is charac-
terized by a sequence of Euler equations holding in every period of time in which the
expectations on the right-hand-side are formed using knowledge of the distribution
of the productivity shock z:,1 as described in (19).

[w(kt) + (14 r(ky) — O)ky — km] R

pE {(1 +7(kes1) — 0) (w(kt+1) + [+ (ki) = 0] kirn — ke, 2t+1)>7:|
(20)

Now suppose that each period is a year, and you have 41 years of data on the
capital stock in your economy {k; }#1,. Suppose that you thought that the data {k;}1%,

5

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html#scipy.optimize.fmin

were generated by a process described in equations (12) through (19). An equivalent
way of saying that is to suppose that you though the data were generated by the
intertemporal Euler equation (20). But you do not know the value of the parameters
of the model [3, d, 7, a]. How might you estimate those parameters (3, d, v, @] to make
the model (20) best match the data {k;}:L,?

[TODO: Add GMM exercise.|

4 Constrained optimization (minimization)

[TODO: Add constrained optimization problem.]

References

BRrROCK, W. A., axnD L. MIRMAN (1972): “Optimal Economic Growth and Uncer-
tainty: the Discounted Case,” Journal of Economic Theory, 4(3), 479-513.

