
Econ 413R: Computational Economics
Spring Term 2012

Bayesian Inference and Computation

1 Statistical Preliminaries

Understanding what marginal pdf’s are and how they are derived will allow us to

go a bit deeper into the theory behind Bayesian methods. It will be helpful if you

familiarize/re-familiarize yourself with a few things:

i. Conditional probability: p(x|y)

P (A|B) =
P (A ∩B)

P (B)

ii. Joint density functions: f(x, y)

f(x, y) = P (x = X, y = Y )

iii. Marginal density functions: fx(x), fy(y)

fx(x) =

∫ ∞
−∞

f(x, y)dy, fy(y) =

∫ ∞
−∞

f(x, y)dx

iv. Conditional pdf’s:

f(x|y) =
f(x, y)

fy(y)
, f(y|x) =

f(x, y)

fx(x)
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1.1 Example:

Let X and Y be continuous random variables with a joint pdf of the form

f(x, y) = 2(x+ y), 0 ≤ x ≤ y ≤ 1

Find the conditional pdf’s f(x|y) and f(y|x).

Solution:

The marginal distributions, f1(x) and f2(y) with x, y ∈ (0, 1) are given by

f1(x) =

∫ 1

x

2(x+ y)dy = (1 + 3x)(1− x)

f2(y) =

∫ y

0

2(x+ y)dx = 3y2

Hence the conditional pdf’s, f(x|y) and f(y|x) are

f(x|y) =
f(x, y)

f2(y)
=

2(x+ y)

3y2
, 0 ≤ x ≤ y

f(y|x) =
f(x, y)

f1(x)
=

2(x+ y)

(1 + 3x)(1− x)
, x ≤ y ≤ 1

2 Introduction to Bayes

2.1 What is the Bayesian approach?

Bayesian statistics is distinguished by its ability to use outside information or prior

knowledge in making statistical estimates, rather than simply extrapolating estimates

from the raw data. This is particularly useful when our sample size n is small, but

can also be useful in much broader applications.
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2.2 Example 1

You are told the probability of successfully navigating an asteroid field is 3,720 to

1. You successfully navigate the asteroid field on your first try. What is your new

assessment of the probability of successfully navigating an asteroid field on your

second try?

Without considering prior information, the direct probability estimate would be

100% (one success out of one attempt). If you consider prior information and guess

that the odds are less than 100%, then you are an honorary Bayesian.

2.3 Example 2

Consider the following data array. Suppose the values are accurate estimates of

healthcare centers (i.e. outpatient clinics, hospitals, family practice), cross tabulated

by zip codes. Note we have one missing value.

82 88 75 97 98

100 102 x 105 103

89 98 90 101 100

What would be an appropriate estimate for the missing value x? Would a value

such as 300 be suitable? Why not? Now suppose that the estimate is 300 (3 people

in a region with 100 people becomes 300 per 10,000 people). You may still want

to consider a weighted average between the direct estimate and the prior estimate,

considering how small the population is in the given region. What if the population

is not so small (i.e. 3,000 people out of 300,000)?1

2.4 Bayesians vs. Frequentists

If you are not a Bayesian, then statisticians would refer to you as a “frequentist.” To

be clear in how these two parties differ, we describe them below.

1 Carlin and Louis (2009)
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Frequentist approach: Uses repeated sampling from a particular model (pdf)

usually referred to as the likelihood function. The model defines the probability dis-

tribution of the data based on unknown, but fixed, parameter values. The likelihood

function is often written as L(y; θ) with θ unknown and fixed.

Bayesian approach: Uses a sampling model like the frequentist approach, but θ

is not fixed. Rather, it is considered to be a random variable over a prior distribu-

tion. The prior and the likelihood function are used to compute the the conditional

distribution of the unknown values, based on the observed data. This conditional

distribution is called the posterior.

2.5 Advantages of Bayesian inference

i. Bayesian methods allow the user to formally include prior information

ii. Inferences are based on a pdf rather than a finite sample

iii. The reason for stopping the experimentation does not affect Bayesian estimates

(see hw problem 1)

iv. All analysis is based on the posterior distribution. No separate tests are needed.

v. Posterior adjusts to changes in data stream

3 Bayes Theorem

Bayes’ Theorem, given in equation 3.1, gives the posterior as a function of the prior

and the likelihood function.

Prior distribution: π(θ)

Posterior distribution: p(θ|y)

Data/likelihood: f(y|θ)

p(θ|y) =
p(y, θ)

p(y)
=

p(y, θ)∫
p(y, θ)dθ

=
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

(3.1)
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or discretely,

P (Bj|A) =
P (A ∩Bj)

P (A)
=

P (A ∩Bj)∑J
j=1 P (A ∩Bj)

=
P (A|Bj)P (Bj)∑J
j=1 P (A|Bj)P (Bj)

(3.2)

Note that the posterior is simply the product of the prior and the likelihood,

renormalized so that the distribution integrates to one. This gives us the Bayesian

catch phrase, which you should now memorize for now and forever:

The posterior is proportional to the likelihood times the prior

Mathematically, this can be written with the following:

p(θ|y) ∝ f(y|θ)π(θ) (3.3)

Because the prior and posterior are proportional to a multiplicative constant, the

likelihood can be multiplied by any constant without affecting the posterior.

In the event that the prior depends on unknown parameters, π(θ|η) where η is

unknown. We find a prior for π(·), called the hyperprior. The same principles in

using a prior to find the posterior are applied in this situation, so we will not examine

the use of hyperpriors in detail.

4 Prior Distributions

A necessary step in building any sort of statistical model using Bayes’ method is

determining an appropriate prior. There is unfortunately no step-by-step procedure

for finding the best prior. A prior might be based on:

• industry experience, existing literature

• theory (i.e. structural model)

• intuition

• histogram of data
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Statisticians often attempt to match important descriptive statistics (i.e. mean, me-

dian, 25% or 75% percentiles). Attempting to match percentiles at the extreme ends

of the distribution, however, can prove to be both frustrating and can distort the

posterior in bad ways. It is even possible to use a prior that is essentially empty,

so that the information from the data quickly dominates the posterior. This part of

determining a prior is important, but also somewhat artsy so we ignore it.

4.1 Conjugate Priors

Nice properties follow from the use of certain priors that are conjugate with the

likelihood function f(y|θ), meaning that they belong to the same distributional family.

These properties can simplify computation considerably and give us an easy-to-write,

analytic expression for our posterior.

4.1.1 Example: conjugate priors

Let X be the number of Payday lenders located within a given radius around banks

in the US. Because X is discrete and is probably clustered around lower numbers, we

assume a Poisson likelihood function.

f(x|θ) =
e−θθx

x!
, x ∈ {0, 1, 2, . . .}, θ > 0

A sensible prior, therefore, would have support on the positive real line. For flexibility,

we use the gamma distribution

π(θ) =
θα−1e−θ/β

Γ(α)βα
, θ > 0, α > 0, β > 0

where β is the scale parameter and α determines whether the distribution is one-

tailed (α ≤ 1) or two-tailed (α > 1). Using equation ?? and dropping any multiplica-
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tive constants gives

p(θ|x) ∝ f(x|θ)π(θ)

∝ (e−θθx)(θα−1e−θ/β)

= θx+α−1e−θ(1+1/β) (4.1)

This is proportional to gamma distribution with parameters β̂ = (1 + 1/β)−1

and α̂ = x + α. Density functions uniquely characterize distributions, so G(α̂, β̂) is

the only distribution proportional to 4.1. This information allows us to find means,

medians, take random samples, or conduct statistical experiments without having

to count every single Payday lender in the country, or doing any kind of numerical

integration.

Figure 1 shows the relationship between several other conjugate priors and their

resulting posterior distributions.2

4.1.2 Can I use more than one prior?

In some cases, it may be useful to use a mixture of conjugate priors. Consider the

likelihood function f(x|θ) and the two component prior π(θ) = απ1(θ) + (1−α)π2(θ)

with 0 ≤ α ≤ 1. Then

p(θ|x) =
f(x|θ)π1(θ)α + f(x|θ)π2(θ)(1− α)∫

[f(x|θ)π1(θ)α + f(x|θ)π2(θ)(1− α)]dθ

=

f(x|θ)π1(θ)
m1(x)

m1(x)α + f(x|θ)π2(θ)
m2(x)

m2(x)(1− α)

m1(x)α +m2(x)(1− α)

=
f(x|θ)π1(θ)
m1(x)

w1 +
f(x|θ)π2(θ)
m2(x)

w2

= p1(θ|x)w1 + p2(θ|x)w2

with w1 = m1(x)α/[m1(x)α + m2(x)(1 − α)] and w2 = 1 − w1. Thus a combination

of priors leads to a similar combination of posteriors.

2Wikipedia also has a comprehensive table listing conjugate priors.

7



Figure 1: Conjugate priors

Source: Cook, J. http://www.johndcook.com

4.2 I don’t want to “skew” my data with a prior?

For those who wish to be as objective as possible, it is possible to use “noninformative”

priors, such as uniform distributions. This is most easily done over a finite-discrete

space or a compact portion of the real line.

Naive empirical Bayesian analysis would directly estimate the prior from the data

(using a kernal density function or a close histogram approximation). This is gener-

ally frowned upon since it is “using the data twice” and can result in overconfident

inferences.

4.3 Using sufficient statistics

With a sample of n independent observations, our likelihood function f(y|θ) becomes∏n
t=1 f(yt|θ) which still allows us to use equation ??. If n is large, we may overcome
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the curse of dimensionality by using statistic S(y) which is sufficient for θ (that is,

f(y|θ) = h(y)g(S(y)|θ)). Here let S(y) = s.

p(θ|y) =
f(y|θ)π(θ)∫
f(y|u)π(u)du

=
h(y)g(S(y)|θ)π(θ)∫
h(y)g(S(y)|u)π(u)du

=
g(s|θ)π(θ)

m(s)
= p(θ|s)

where m(s) > 0. Note that h(y) cancels in the middle expression. Thus we can

bypass using the entire dataset y if this sufficient statistic is available (see homework

problem 4).

4.4 Sequential estimation

Suppose we now have two independent samples of data, y1 and y2, drawn at two

different periods in time (perhaps a clinical trial or election results that come in

from different states at different times). Baye’s Theorem may be used sequentially as

follows:

p(θ|y1, y2) ∝ f(y1, y2|θ)π(θ)

= f2(y2|θ)f1(y1|θ)π(θ)

∝ f2(y2|θ)p(θ|y1)

In this way, the prior for the second dataset y2, is simply the posterior from the first

dataset, y1.

5 Confidence Intervals/Credible Sets

The Bayesian term for a confidence interval is a “credible set.” A credible set is

the probability that θ lies in set C, given the data y is at least (1 − α)% in C.

Mathematically, a 100 ∗ (1− α)% credible set is expressed as

1− α ≤ P (C|y) =

∫
C

p(θ|y)dθ. (5.1)
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Compare this to the definition for a confidence interval: if we could recompute C

for a large number of datasets collected in the same way as ours, C would contain θ

(1− α)% of the time.

The difference between the two is that C often cannot be recollected (i.e. voter

turnout in the 1960). The true value of θ is either in C or it is not. Hence a confidence

interval is not a probability estimate, but rather just a signal as to the quality of the

estimate. A credible set, however, is an actual probability statement.

A credible set is determined via a “horizontal line test.” Intuitively, this is ac-

complished by lowering a horizontal line over a pdf (see figure 2) until 95% of the

distribution is under the line. This differs from the frequentist approach of chopping

off 2.5% of the distribution from each tail for a two-tailed test, or 5% from either tail

for a one-tailed test. Observe that these approaches are only the same for symmetric

distributions.

Figure 2: Horizontile line test

5.1 Hypothesis testing

TODO

Given two pdf’s, f(y|θ) and g(y|θ), it is important to be able to determine whether

or not the the distributions are statistically different.
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Po-Boy’s hypothesis test

Draw random samples from both distributions

Sort both draws, call them Asort and Bsort

Difference draws, C = Asort −Bsort

Calculate percentage of entries in Csort above(below) H0

6 Bayesian Inference

TODO

7 Bayesian Computation

7.1 Multiple parameters

Previously, we have only considered a single parameter θ. What if our likelihood

function has several variables? We begin with an example with n = 2 , and then

proceed to the general case, known as Gibbs sampling.

7.1.1 Example

Suppose we have a normal likelihood function f(·) with mean µ and variance σ2.

Then f(y|µ, σ2) ∼ N(µ, σ2). How do we deal with two variables, µ and σ2, especially

when a particular prior might be appropriate for µ but not for σ2 or vice versa? We

proceed with two steps, one for each variable:

• Hold σ is known and estimate µ

• Hold µ is known and estimate σ2

For the first of these parameters, µ, we use a normally distributed prior π(µ′, τ)since

−∞ ≤ µ ≤ ∞. By exercise 3 we have the following result p(µ|y, σ2) = N(σ|σ2µ′+τ
σ2+τ2

, σ2τ2

σ2+τ2
).

For the second of these parameters, σ2, a normal prior would not be optimal, since

the normal distribution has a support of the entire real line, whereas 0 ≤ σ2. Instead

we use an inverse gamma distribution.
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To simplify our approach, we begin with a gamma distribution, but use the mea-

sure for “precision” defined to be the inverse of the variance τ = 1
σ2 .

Using this transformation, our gamma prior becomes

π(y|a, c) =
1

Γ(a)ba

(
1

y

)a−1
e

1
yb

=
1

Γ(a)ba

(
1

y

)a−1
e−1/by|

(
− 1

y2

)
|

=
ca

Γ(a)
(y)−a−1 e−c/y (7.1)

with y = σ2 and c = 1/b. This gives us the following posterior:

p(σ2|x, µ, a, c) ∝
(

(2π)−n/2(σ2)−n/2e
s

2σ2

)( ca

Γ(a)

(
σ2
)−a−1

e−c/σ
2

)
∝ (σ2)−n/2e−s/(2σ

2)e−c/σ
2

(σ2)−a−1

∝ (σ2)−n/2−a−1e−s/(2σ
2)−c/(σ2) (7.2)

where s =
∑

(xi − µ)2. Let c′ = (s/2 + c) and a′ = (n/2 + a). Then 7.2 is Γ(a′, c′),

which is equivalent to

p(σ2|µ, x, a, b) =
(s/2 + b)n/2+a

Γ(n/2 + a)

(
σ2
)n/2+a−1

e
−(s/2+b)

σ2 (7.3)

7.2 Gibbs Sampling

Suppose we have a distribution based on n parameters. Suppose also, that we do

now know the closed form for the likelihood function, but that we are able to get the

value for the pdf at any individual point. When direct sampling is difficult, we can

use a Gibbs sampler to get a sequence of random samples that can help us find out

the shape of the pdf.

Gibbs sampling works by constructing a Markov chain of draws from the likeli-

hood function. We can then thin out the sample to get “random” draws by taking

every 100th or 1000th observation. With additional iterations, the estimation im-

proves. Hence the first portion of the estimation, called the “burn-in” phase, is often
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thrown out before we look at the distribution of the sample.

Gibb’s Sampling

θ = (θ1, θ2, . . . , θk)

Assign θ01, θ
0
2, . . . , θ

0
k arbitrary values

for m loops:

Update θ1 from [θ1|θi−12 , θi−13 , . . . , θi−1k ]

Update θ2 from [θ2|θi1, θi−13 , . . . , θi−1k ]

Update θ3 from [θ3|θi1, θi2, . . . , θi−1k ]
...

Update θk from [θk|θi1, θi2, . . . , θik−1]

7.3 Metropolis Algorithm

TODO

Metropolis Algorithm

Determine a starting value for θ

for m loops:

Sample θ∗ from a symmetric proposal distribution: J(θ∗|θt−1)

Compute r = p(θ∗|y)
p(θt−1|y) , where y is the data

Update θt =

θ
∗ with probability r

θt−1 otherwise
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Exercises

Exercise 1: Bayes’ Theorem 1

A certain kind of tumor is benign about 85% of the time. The biopsy tests are not

perfect, and err toward over-reporting the tumor as cancerous. A study just reported

the following conditional probabilities based on the state of the tumor, cancerous or

benign:

P (test +|cancerous) = .99 and P (test +|benign) = .23

If you have a biopsy that tests positive for cancer, what is the probability that he

actually does not have cancer?

Exercise 2: Bayes’ Theorem 2

Consider the normal likelihood

f(y|θ) ∼ N(θ, σ2) =
1

σ
√

2π
exp

(
−(y − θ)2

2σ2

)

In this case, σ is a known constant and θ is unknown. The prior distribution for

θ is given as π(θ) ∼ N(µ, τ 2), where µ and τ are known parameters. Verify that

by plugging these expressions into equation (2.1) (see notes) we get the following

posterior distribution:

p(θ|y) = N

(
θ|σ

2µ+ τ 2y

σ2 + τ 2
,
σ2τ 2

σ2 + τ 2

)

Exercise 3: updating priors

Consider the situation in problem 3, but now suppose that we have a sample of n

independent observations from f(y|θ). Since S(y) = ȳ is sufficient for θ, we can say
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p(θ|y) = p(θ|ȳ). Hence the posterior expression in the homework can be written as

p(θ|ȳ) = N

(
θ|(σ

2/n)µ+ τ 2ȳ

(σ2/n) + τ 2
,

(σ2/n)τ 2

(σ2/n) + τ 2

)
= N

(
θ|σ

2µ+ nτ 2ȳ

σ2 + nτ 2
,

σ2τ 2

σ2 + nτ 2

)

(a) Suppose µ = 2, τ = 1, y = 6, σ = 1, and n = 1 (the case in HW 3). Use

Python to plot the prior, likelihood, and posterior distributions. Which distribution

(prior or likelihood) dominates the posterior?

(b) What if n = 10?

Exercise 4: conjugate priors

You’ve been hired by Yellowstone to provide them with info relative to the number

of eagles in the park. It is assumed that eagle sightings follow a poisson likelihood.

Your daily eagle count for the first week is (0, 1, 2, 0, 1, 0, 3).

(a)Use a gamma prior with shape of 0.3 and scale of 4. Report the following:

posterior shape and scale parameters

expected number of eagle sightings per day

95% “confidence interval” for number of eagle sightings per day

(b) The following week your daily eagle count is (1, 3, 2, 2, 0, 1, 1). Use the posterior

from part as as your prior and report the same numbers. Is this any different than

using the prior from part (a) and using all the data at once?

Exercise 5: conjugate priors

You’ve been hired by a motorcycle shop to determine if their storewide sale days are

effective. You have sales data for merchandise, bikes, and repairs (motorcycle.txt).

(a) Plot a histogram for each sales category (merch, bikes, repairs, total) for both

sale and non-sale days.
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(b) Choose a conjugate prior/likelihood pair for each category (do not distinguish

between sale/non-sale days). Explain your choice.

(c) Update your prior based on the data and report the following:

-are revenues significantly higher during the store-wide sale days?

-probability that revenue for a given sale day will exceed $50, $100, $1000

-plot the priors and posteriors for total revenue for sale and non-sale days

Exercise 6: Hyperpriors and Conditional Distribu-

tions

In some settings we may wish to model our uncertainty about the parameters of our

prior distribution. We may do so by simply specifying a prior distribution for those

parameters. We sometimes call this a hyperprior. This approach is called hierarchical

modeling. Consider the Poisson/gamma model.

Yi|θi ∼ Poisson(θiti), θi ∼ G(α, β), i = 1, ..., k

where ti are known constants. Also assume α is known, but β is not. Use an

inverse gamma hyperprior on β with known parameters c and d. Thus the density

functions corresponding to the three stages of the model are

f(yi|θi) =
d−(θiti)(θiti)

yi

yi!
, yi ≥ 0, θi > 0

g(θi|β) =
θα−1i e−θi/β

Γ(α)βα
, α > 0, β > 0

h(β) =
e−1/(βd)

Γ(c)dcβc+1
, c > 0, d > 0

The main interest lies in finding the posterior distributions of the θi, p(θi|y).

While the gamma prior is conjugate with the Poisson likelihood and the inverse

gamma hyperprior is conjugate with the gamma prior, no closed form for p(θi|y) is
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available. We can, however, find the full conditional distributions of β and θi. Find

these distributions p(θi|θj 6=i, β,y) and p(β|{θi},y).

Hint: Begin by verifying that each conditional distribution is proportional to[∏k
i=1 f(yi|θi)g(θi|β)

]
h(β).

Exercise 7: Gibbs Sampling

Note that using the model and results of Exercise 6 we have functional forms that

we can sample directly from for our conditional distributions. Write a Gibbs sampler

for this model to find posterior information about β and the θi using the data from

the table below and letting c = 0.1 ,d = 1.0, and α = 0.7. . The data is on gas pump

failures form Garver and O’Muircheartaigh (1987). Each observation is the number

of pump failures observed (Y ) in a given amount of time (t). The failure rate (r) is

also reported for convenience. Because the length of time each pump was observed

varied, we need to scale our results accordingly (thus the parameter in the Poisson

distribution is θiti and not just θi). This ensures that our θi can be compared as

rates.

i Yi ti ri
1 5 94.320 .053
2 1 15.720 .064
3 5 62.880 .080
4 14 125.760 .111
5 3 5.240 .573
6 19 31.440 .604
7 1 1.048 .954
8 1 1.048 .954
9 4 2.096 1.910
10 22 10.480 2.099

Report the means, standard deviation, 95 percent credible interval, and median

for each parameter using a single chain run of 10,000 samples after a 1,000 sample

burn-in. Comment on your results for the θi (the parameters of interest). What do

you notice about the means and standard deviations for θ5 and θ6? Can you explain

this?
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Exercise 8: Metropolis-Hastings Algorithm

In this problem we will consider data from Bliss (1935) reported below. These data

record the number of adult beetles killed after five hours of exposure to various levels

of gaseous carbon disulphide (CS2). We will use a generalized logit model suggested

by Prentice (1976).

P (death|w) ≡ g(w) = {exp (x)/(1 + exp (x))}m1

Here w is the predictor variable (dose) and x = (w − µ)/σ where µ ∈ R and

σ2,m1 > 0. Suppose there are yi flour beetles dying out of ni exposed at level wi,

i = 1, ..., N .

Dosage # Killed # Exposed
wi yi ni

1.6907 6 59
1.7242 13 60
1.7552 18 62
1.7842 28 56
1.8113 52 63
1.8369 53 59
1.8610 61 62
1.8839 60 60

For the prior distributions, assume m1 ∼ G(a0, b0), µ ∼ N(c0, d
2
0), and σ2 ∼

IG(e0, f0), where a0, b0, c0, d0, e0, and f0 are known and m1, µ, and σ2 are independent.

You may be tempted to think that these families of distributions have been chosen

to preserve some sort of conjugate structure, but this is not the case for the joint

posterior distribution or any of the conditional distributions. Thus we must resort to

the Metropolis-Hastings algorithm.

Verify that

p(µ, σ2,m1|y) ∝

{
N∏
i=1

[g(wi)]
yi [1− g(wi)]

ni−yi

}
ma0−1

1

σ2(e0+1)

× exp

[
−1

2

(
µ− c0
d0

)2

− m1

b0
− 1

f0σ2

]
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Next make a convenient change of variables to θ = (θ1, θ2, θ3) = (µ, 1
2

log sigma2, logm1)

so that our parameter space is R3 (don’t forget the Jacobian). Why is this necessary

and helpful?

Verify that

p(θ|y) ∝ h(θ) =

{
N∏
i=1

[g(wi)]
yi [1− g(wi)]

ni−yi

}
exp (a0θ3 − 2e0θ2)

× exp

[
−1

2

(
θ1 − c0
d0

)2

− exp (θ3)

b0
− exp (−2θ2)

f0

]

Suppose we let a0 = .25 and b0 = 4 so that m1 has a prior mean of 1 and prior

standard deviation 2. Also, let c0 = 2, d0 = 10, e0 = 2.000004, and f0 = 1000 so that

our priors for µ and σ2 are rather vague. The latter two choices imply a prior mean

of .001 and prior standard deviation of .5 for σ2.

Write a Metropolis-Hastings sampler using a jumping distribution of N3(θ
(t−1), Σ̃)

where Σ̃ = D = Diag(.00012, 0.033, .10). (Tip: Calculating r is more numerically

stable if you compute it with r = exp [log h(θ∗)− log h(θ(t−1)]). Use three parallel

chains of 10000 draws with initial conditions of (1.8,−3.9,−1), (1.5,−5.5,−2.5), and

(2.1,−2.3, 1.5).

Generate monitoring plots for µ, log σ, and logm1. (Monitoring plots are plots

of the draws for each parameter with the parameter values on the vertical axis and

the draw number on the horizontal axis.) Use the monitoring plots to choose a

reasonable burn-in length. Use the remaining draws from one chain to estimate the

lag 1 sample autocorrelations. Use the post burn-in draws from all three chains to

generate histograms for each parameter and report the .025, .5, and .975 quantiles.

Also report the overall acceptance rate.

What do you notice about the acceptance rate? The autocorrelations? What

might be the source of these results? (Hint: You may want to compute the sample

correlations between parameters to help inform your reasoning.)
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Exercise 9: Metropolis-Hastings Algorithm

Consider one possible improvement we could make in generating our variance-covariance

matrix in Exercise 8. Use the output of the first algorithm to estimate the posterior

covariance matrix (Σ̂ = 1
G

∑G
g=1(θg − θ̄)(θg − θ̄)′ where g = 1, ..., G indexes the post-

convergence Monte Carlo samples). Then let Σ̃ = 2Σ̂. This reflects “folklore” that

says two times the posterior covariance should perform well.

Report the same output as in Exercise 8 (monitoring plots, burn-in length, lag

1 autocorrelations, acceptance rate, histograms, and quantiles) for the new covari-

ance matrix in your jumping distribution. Comment on differences between the two

algorithms.

Exercise 10: Independence Chains

Reanalyze the flour beetle mortality data and model from Exercise 8, replacing the

multivariate Metropolis algorithm with a Hastings algorithm employing independence

chains drawn from a N(θ̃, Σ̃) candidate density where θ̃ = (1.8,−4.0,−1.0)′ (roughly

the true posterior mode) and Σ̃ as estimated in 9.

Exercise 11: Metropolis within Gibbs

As in Exercise 10, reanalyze the flour beetle mortality data and model, this time using

a univariate Metropolis (Metropolis within Gibbs) algorithm using proposal densities

N(θ
(t−1)
i , Dii), i = 1, 2, 3 with D as given in Exercise 8. The Metropolis within Gibbs

algorithm is just the Gibbs sampler but employing the Metropolis-Hastings algorithm

to sample from the conditional distributions.

Exercise 12: Metropolis-Hastings Algorithm

Notice that the decision to use 2 in Exercise 9 was rather arbitrary. The optimal

amount of variance inflation might well depend on the dimension and precise nature
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of the target distribution, the type of sampler used (multivariate versus univariate,

Metropolis versus Hastings (independent chains), etc.) and any number of other

factors.

Explore these issues in the context of the flour beetle mortality data by resetting

Σ̃ = cΣ̂ for c = 1 (candidate variance matched to the target) and c = 4 using the

multivariate Metropolis algorithm (Exercise 9), the multivariate Hastings algorithm

(Exercise 10), and the univariate Metropolis algorithm (Exercise 11).
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