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1 Overlapping Generations (OLG) Model

The overlapping generations (OLG) model was first proposed by Samuelson (1958). It
is an extremely useful economic model with heterogeneous agents, and its usefulness
is manifest in two main characteristics. First, the agents are heterogeneous in terms of
their ages, which seems to be an important difference in terms of economic decision
making.1 In addition, overlapping generations models assume that the lifetime of
an individual is finite and must eventually end. This is a reality for all of us, and
seems very intuitive. However, infinitely lived agent models have become important
in economics because they are actually more analytically tractable, and the decisions
an agent makes if they live forever might be a good approximation of what an agent
would choose if he expected to live for 40 more years. But OLG models are essential
for answering questions about policies that affect age cohorts differently, the leading
example of which is pension programs.

The model presented here is a perfect foresight, 3-period-lived agent overlapping
generations (OLG) model. It is called overlapping generations because three genera-
tions (different ages) individuals are alive during each period in the model.2 Assume
that a unit measure of individuals are born each period, and each generation of in-
dividuals lives for three periods. Individuals inelastically supply labor every period
and choose how much to consume and how much to save through investment. A
unit measure of identical, perfectly competitive firms rent investment capital from
households and hire labor from households.

1.1 Individuals

A unit measure of identical individuals are born each period and live for three periods.
Let the age of an individual be indexed by s = {1, 2, 3}. In general, an age-s individual
faces a budget constraint each period that looks like the following:

cs,t + ks+1,t+1 = wtls,t + (1 + rt+1 − δ)ks,t ∀s, t (1.1)

We assume the individuals supply a unit of labor inelastically in the first two periods
of life and are retired in the last period of life.

ls,t =

{
1 if s = 1, 2

0 if s = 3
∀s, t (1.2)

1The savings decisions of 70-year-olds are very different from those of 20-year-olds.
2A 3-period-lived agent OLG model actually has the same properties as an S-period lived agent

model. So we use a 3-period-lived agent model in this section, but you could easily use the same
analytics and code to extend this to an S-period lived agent OLG model.
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We also assume that households are born with no capital k1,t = 0 and that individuals
save no income in the last period of their lives k4,t = 0 for all periods t.

These assumptions give rise to the three age-specific budget constraints that are
a special case of (1.1).3

c1,t + k2,t+1 = wt (1.3)

c2,t+1 + k3,t+2 = wt+1 + (1 + rt+1 − δ)k2,t+1 (1.4)

c3,t+2 = (1 + rt+2 − δ)k3,t+2 (1.5)

To simplify, we assume that cs,t, ks,t ≥ 0. However, the equilibrium is such that
individuals will not want to borrow so we do not need to account for these non
negativity constraints.4

Let the utility of consumption in each period be defined by a function u(cs,t), such
that u′ > 0, u′′ < 0, and limc→0 u(c) = −∞. We will use the constant relative risk
aversion (CRRA) utility function that takes the following form,

u(cs,t) =
(cs,t)

1−γ − 1

1− γ
(1.6)

where the parameter γ ≥ 1 represents the coefficient of relative risk aversion.
Individuals choose lifetime consumption {cs,t+s−1}3s=1, savings {ks+1,t+s}2s=1 to

maximize lifetime utility, subject to the budget constraints and non negativity con-
straints.

max
{cs,t+s−1}3s=1,{ks+1,t+s}2s=1

u(c1,t) + βu(c2,t+1) + β2u(c3,t+2)

c1,t = wt − k2,t+1

c2,t+1 = wt+1 + (1 + rt+1 − δ)k2,t+1 − k3,t+2

c3,t+2 = (1 + rt+2 − δ)k3,t+2

(1.7)

The number of variables to choose in the household’s optimization problem can be
reduced by substituting the budget constraints into the optimization problem (1.7)
and including the nonnegativity constraints on the two capital stocks as multipliers.5

max
k2,t+1,k3,t+2

L =u
(
wt − k2,t+1

)
+ βu

(
wt+1 + [1 + rt+1 − δ]k2,t+1 − k3,t+2

)
...

+ β2u
(

[1 + rt+2 − δ]k3,t+2

) (1.8)

3Note that the 3-period-lived agent OLG model generalizes to the N -period-lived agent model.
The more periods an agent lives, the more period budget constraints there are that look like (1.4).

4Note that middle-aged saving k3,t > 0 always in equilibrium. This is because if k3,t ≤ 0 in any
period, c3,t ≤ 0. If k3,t > 0 always, then k2,t > 0 also because c2,t < when k2,t ≤ 0. This happens
because the marginal utility of zero consumption is −∞. This is called an Inada condition, which is
a condition that moves optimal decisions away from the corners.

5Notice that the individual’s problem can be reduced from 5 choice variables to 2 choice variables
because the choice in the first two periods between consumption and savings is really just one
choice. And the choice of how much to consume in the last period is trivial, because an individual
just consumes all their income in the last period.
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The optimal choice of how much to save in the second period of life k3,t+2 is given
by taking the derivative of the Lagrangian (1.8) with respect to k3,t+2 and setting it
equal to zero.

∂L
∂k3,t+2

= 0 ⇒ u′
(
c2,t+1

)
= β(1 + rt+2 − δ)u′

(
c3,t+2

)
⇒ u′

(
wt+1 + [1 + rt+1 − δ]k2,t+1 − k3,t+2

)
= ...

β(1 + rt+2 − δ)u′
(

[1 + rt+2 − δ]k3,t+2

) (1.9)

Equation (1.9) implies that the optimal savings for age-2 individuals is a function
ψ2,t+1 of the wage and interest rate in that period, the interest rate in the next
period, and how much capital the individual saved in the previous period.

k3,t+2 = ψ2,t+1

(
wt+1, rt+1, rt+2, k2,t+1

)
(1.10)

The optimal choice of how much to save in the first period of life k2,t+1 is a little
more involved. The first order condition of the Lagrangian includes derivatives of
k3,t+2 with respect to k2,t+1 because (1.9) and (1.10) show that optimal middle-aged
savings k3,t+2 is a function of savings when young k2,t+1.

∂L
∂k2,t+1

= 0 ⇒ u′
(
c1,t
)

+ β(1 + rt+1 − δ)u′
(
c2,t+1

)
...

− βu′
(
c2,t+1

)∂ψ2,t+1

∂k2,t+1

+ β2(1 + rt+2 − δ)u′
(
c3,t+2

)∂ψ2,t+1

∂k2,t+1

= 0

⇒ u′
(
wt − k2,t+1

)
=

β(1 + rt+1 − δ)u′
(

[1 + rt+1 − δ]k2,t+1 − k3,t+2

)
...

+ β
∂ψ2,t+1

∂k2,t+1

[
u′(c2,t+1)− β(1 + rt+2 − δ)u′(c3,t+2)

]
(1.11)

Notice that the term in the brackets on the third line of (1.11) equals zero because
of the optimality condition (1.9) for k3,t+1. This is the envelope condition or the
principle of optimality. The intuition is that I don’t need to worry about the effect
of my choice today on my choice tomorrow because I will optimize tomorrow given
today. So the first order condition for optimal savings when young k2,t+1 simplifies
to the following expression.

∂L
∂k2,t+1

= 0 ⇒ u′
(
c1,t
)

= β(1 + rt+1 − δ)u′
(
c2,t+1

)
⇒ u′

(
wt − k2,t+1

)
= ...

β(1 + rt+1 − δ)u′
(
wt + [1 + rt+1 − δ]k2,t+1 − ψ2,t+1

) (1.12)
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Equation (1.12) implies that the optimal savings for age-1 individuals is a function of
the wages in that period and the next period and the interest rate in the next period
and in the period after that.6

k2,t+1 = ψ1,t

(
wt, wt+1, rt+1, rt+2

)
(1.13)

Instead of looking at the age-1 and age-2 savings decisions of a particular individ-
ual, which happen in consecutive periods, we could look at the age-1 savings decisions
of the young in period t as characterized in (1.12) and the age-2 savings decisions of
the middle-aged in period t. This savings k3,t+1 is characterized by the following first
order condition, which is simply Equation (1.9) iterated backward in time one period,

u′
(
c2,t
)

= β(1 + rt+1 − δ)u′
(
c3,t+1

)
u′
(
wt + [1 + rt − δ]k2,t − k3,t+1

)
= β(1 + rt+1 − δ)u′

(
[1 + rt+1 − δ]k3,t+1

) (1.14)

which implies that the period-t savings decision of the middle aged is a function of
the wage and interest rate in period-t, the interest rate in the period t+ 1, and how
much capital the individual saved in the previous period.

k3,t+1 = ψ2,t

(
wt, rt, rt+1, k2,t

)
(1.15)

1.2 Firms

The economy also includes a unit measure of identical, perfectly competitive firms
that rent investment capital from individuals for real return rt and hire labor for real
wage wt. Firms use their total capital Kt and labor Lt to produce output Yt every
period according to a Cobb-Douglas production technology.

Yt = F (Kt, Lt) ≡ AKα
t L

1−α
t where α ∈ (0, 1) and A > 0 (1.16)

We assume that the price of the output in every period Pt = 1.7 The representative
firm chooses how much capital to rent and how much labor to hire to maximize profits.

max
Kt,Lt

AKα
t L

1−α
t − rtKt − wtLt (1.17)

The two first order conditions that characterize firm optimization are the following.

rt = αA

(
Lt
Kt

)1−α

(1.18)

wt = (1− α)A

(
Kt

Lt

)α
(1.19)

6The presence of rt+2 in (1.13) comes from the fact that optimal k2,t+1 depends on the optimal
k3,t+2 from (1.10).

7This is just a cheap way to assume no monetary policy. Relaxing this assumption is important
in many applications for which price fluctuation is important.
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1.3 Market clearing

Three markets must clear in this model: the labor market, the capital market, and
the goods market. Each of these equations amounts to a statement of supply equals
demand.

Lt =
3∑
s=1

ls,t = 2 (1.20)

Kt =
3∑
i=2

ks,t = k2,t + k3,t (1.21)

Yt = Ct +Kt+1 − (1− δ)Kt (1.22)

The goods market clearing equation (1.22) is redundant by Walras’ Law.

1.4 Equilibrium

Before providing exact definitions of the functional equilibrium concepts, I want to
give a rough sketch of the equilibrium, so you can see what the functions look like
and understand the exact equilibrium definition more clearly. A rough description of
the equilibrium solution to the problem above is the following three points

1. Households optimize according to (1.12) and (1.14).

2. Firms optimize according to (1.18) and (1.19).

3. Markets clear according to (1.20) and (1.21).

These equations characterize the equilibrium and constitute a system of nonlinear
difference equations.

The easiest way to understand the equilibrium solution is to substitute the market
clearing conditions (1.20) and (1.21) into the firm’s optimal conditions (1.18) and
(1.19) solve for the equilibrium wage and interest rate as functions of the distribution
of capital.

wt
(
k2,t, k3,t

)
: wt = (1− α)A

(
k2,t + k3,t

2

)α
(1.23)

rt
(
k2,t, k3,t

)
: rt = αA

(
2

k2,t + k3,t

)1−α

(1.24)

Now (1.23) and (1.24) can be substituted into household Euler equations (1.12) and
(1.14) to get the following two-equation system that completely characterizes the
equilibrium.

u′
(
wt(k2,t, k3,t)− k2,t+1

)
= ...

β
(

1 + rt+1(k2,t+1, k3,t+1)− δ
)
u′
(

[1 + rt+1(k2,t+1, k3,t+1)− δ]k2,t+1 − k3,t+2

) (1.25)
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u′
(
wt(k2,t, k3,t) + [1 + rt(k2,t, k3,t)− δ]k2,t − k3,t+1

)
= ...

β
(

1 + rt+1(k2,t+1, k3,t+1)− δ
)
u′
(

[1 + rt+1(k2,t+1, k3,t+1)− δ]k3,t+1

) (1.26)

The system of two dynamic equations (1.25) and (1.26) characterizing the decisions
for k2,t+1 and k3,t+1 is not identified. These households know the current distribution
of capital k2,t and k3,t. However, we need to solve for policy functions for k2,t+1, k3,t+1,
and k3,t+2 from these two equations. It looks like this system is unidentified. But the
solution is a fixed point of stationary functions.

We first define the steady-state equilibrium, which is exactly identified. Let the
steady state of endogenous variable xt be characterized by xt+1 = xt = x̄ in which
the endogenous variables are constant over time. Then we can define the steady-state
equilibrium as follows.

Definition 1 (Steady-state equilibrium). A non-autarkic steady-state equilib-
rium in the perfect foresight overlapping generations model with 3-period lived agents
is defined as constant allocations of consumption {c̄s}3s=1, capital {k̄s}3s=2, and prices
w̄ and r̄ such that:

1. households optimize according to (1.12) and (1.14),

2. firms optimize according to (1.18) and (1.19),

3. markets clear according to (1.20) and (1.21).

As we saw earlier in this section, the characterizing equations in Definition 1
reduce to (1.25) and (1.26). These two equations are exactly identified in the steady
state. That is, they are two equations and two unknowns (k̄2, k̄3).

u′
(
w(k̄2, k̄3)− k̄2

)
= β

(
1 + r(k̄2, k̄3)− δ

)
u′
(

[1 + r(k̄2, k̄3)− δ]k̄2 − k̄3
)

(1.27)

u′
(
w(k̄2, k̄3) + [1 + r(k̄2, k̄3)− δ]k̄2 − k̄3

)
= ...

β
(

1 + r(k̄2, k̄3)− δ
)
u′
(

[1 + r(k̄2, k̄3)− δ]k̄3
) (1.28)

We can solve for steady-state k̄2 and k̄3 by using a unconstrained optimization solver.
Then we solve for w̄, r̄, c̄1, c̄2, and c̄3 by substituting k̄2 and k̄3 into the equilibrium
firm first order conditions and into the household budget constraints.

Now we can get ready todefine the non-steady-state equilibrium. To do this, we
need to define two other important concepts.

Definition 2 (State of a dynamical system). The state of a dynamical system—
sometimes called the state vector—is the smallest set of variables that completely
summarizes all the information necessary for determining the future of the system at
a given point in time.
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In the 3-period-lived agent, perfect foresight, OLG model described in this section,
the state vector can be seen in equations (1.25) and (1.26). What is the smallest set
of variables that completely summarize all the information necessary for the three
generations of all three generations living at time t to make their consumption and
saving decisions? What information do they have at time t that will allow them to
make their savings decisions? The state vector of this model in each period is the
distribution of capital (k2,t, k3,t).

Definition 3 (Stationary function). We define a stationary function to be a func-
tion that only depends upon its arguments and does not depend upon time.

The relevant examples of stationary functions in this model are the policy func-
tions for saving and investment. We defined the functions ψ1,t and ψ2,t generally in
equations (1.13) and (1.15). But they were indexed by time as evidenced by the
t in ψ1,t and ψ2,t. The stationary versions of those functions would be ψ1 and ψ2,
which do not depend upon time. The arguments of the functions (the state) may
change overtime causing the savings levels to change over time, but the function of
the arguments is constant across time.

With the concept of the state of a dynamical system and a stationary function,
we are ready to define a functional non-steady-state equilibrium of the model.

Definition 4 (Non-steady-state functional equilibrium). A non-steady-state
functional equilibrium in the perfect foresight overlapping generations model with 3-
period lived agents is defined as stationary allocation functions of the state ψ1

(
k2,t, k3,t

)
and ψ2

(
k2,t, k3,t

)
and stationary price functions w(k2,t, k3,t) and r(k2,t, k3,t) such that:

1. households optimize according to (1.12) and (1.14),

2. firms optimize according to (1.18) and (1.19),

3. markets clear according to (1.20) and (1.21).

We have already shown how to boil down the characterizing equations in Definition
4 to two equations (1.25) and (1.26). But we have also seen that those two equations
are not identified. So how do we solve for these equilibrium functions? The solution
to the non-steady-state equilibrium in Definition 4 is a fixed point in function space.
Choose two functions ψ1 and ψ2 and verify that they satisfy the Euler equations for
all points in the state space (all possible values of the state).

1.5 Solution method: time path iteration (TPI)

The benchmark conventional solution method for the non-steady-state rational ex-
pectations equilibrium transition path in OLG models is outlined in Auerbach and
Kotlikoff (1987, ch. 4) for the perfect foresight case and in Nishiyama and Smetters
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(2007, Appendix II) and Evans and Phillips (2013, Sec. 3.1) for the stochastic case.
We call this method time path iteration (TPI). The idea is that the economy is in-
finitely lived, even though the agents that make up the economy are not. Rather
than recursively solving for equilibrium policy functions by iterating on individual
value functions, one must recursively solve for the policy functions by iterating on
the entire transition path of the endogenous objects in the economy (see Stokey and
Lucas (1989, ch. 17)). Evans and Phillips (2013) give a good description of how to
implement this method.

The key assumption is that the economy will reach the steady-state equilibrium
(k̄2, k̄3) described in Definition 1 in a finite number of periods T < ∞ regardless
of the initial state (k2,1, k3,1). The first step is to assume a transition path for ag-
gregate capital Ki = {Ki

1, K
i
2, ...K

i
T} such that T is sufficiently large to ensure that

(k2,T , k3,T ) = (k̄2, k̄3). The superscript i is an index for the iteration number. The
transition path for aggregate capital determines the transition path for both the real
wage wi = {wi1, wi2, ...wiT} and the real return on investment ri = {ri1, ri2, ...riT}. The
exact initial distribution of capital in the first period (k2,1, k3,1) can be arbitrarily
chosen as long as it satisfies Ki

1 = k2,1 + k3,1 according to market clearing condition
(1.21). One could also first choose the initial distribution of capital (k2,1, k3,1) and
then choose an initial aggregate capital stock Ki

1 that corresponds to that distribu-
tion. As mentioned earlier, the only other restriction on the initial transition path for
aggregate capital is that it equal the steady-state level Ki

T = K̄ = k̄2 + k̄3 by period
T . But the aggregate capital stocks Kj

t for periods 1 < t < T can be any level.
Given the initial capital distribution (k2,1, k3,1) and the transition paths of aggre-

gate capital Ki = {Ki
1, K

i
2, ...K

i
T}, the real wage wi = {wi1, wi2, ...wiT}, and the real

return to investment ri = {ri1, ri2, ...riT}, one can solve for the optimal savings decision
for the initial middle-aged s = 2 individual for the last period of his life k3,2 using his
intertemporal Euler equation (1.26).

u′
(
wj1 + [1 + rj1 − δ]k2,1 − k3,2

)
= β

(
1 + rj2 − δ

)
u′
(

[1 + rj2 − δ]k3,2
)

(1.29)

Notice that everything in equation (1.29) is known except for the savings decision
k3,2. This is one equation and one unknown.

The next step is to solve for k2,2 and k3,3 for the initial young s = 1 agent at period
1 using the appropriately timed versions of (1.12) and (1.9) with the conjectured
interest rates and real wages.

u′
(
wj1 − k2,2

)
= β(1 + rj2 − δ)u′

(
[1 + rj2 − δ]k2,2 − k3,3

)
(1.30)

u′
(
wj2 + [1 + rj2 − δ]k2,2 − k3,3

)
= β(1 + rj3 − δ)u′

(
[1 + rj3 − δ]k3,3

)
(1.31)

Everything is known in these two equations except for k2,2 and k3,3. So we can solve
for those with a standard unconstrained solver. We next solve for k2,t and k3,t+1 for
the remaining t ∈ {3, 4, ...T + m}, where T represents the period in the future at
which the economy should have converged to the steady-state and m represents some
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number of periods past that.8

At this point, we have solved for the distribution of capital (k2,t, k3,t) over the
entire time period t ∈ {1, 2, ...T}. In each period t, the distribution of capital implies
an aggregate capital stock Ki′

t = k2,t + k3,t. I put a “ ′ ” on this aggregate capital
stock because, in general, Ki′

t 6= Ki
t . That is, the conjectured path of the aggregate

capital stock is not equal to the optimally chosen path of the aggregate capital stock
given Ki.9

Let ‖·‖ be a norm on the space of time paths for the aggregate capital stock.
Common norms to use are the L2 and the L∞ norms. Then the fixed point necessary
for the equilibrium transition path from Definition 4 has been found when the distance
between Ki′ and Ki is arbitrarily close to zero.

‖Ki′ −Ki‖ < ε for ε > 0 (1.32)

If the fixed point has not been found ‖Ki′ −Ki‖ > ε, then a new transition path for
the aggregate capital stock is generated as a convex combination of Ki′ and Ki.

Ki+1 = ξKi′ + (1− ξ)Ki for ξ ∈ (0, 1) (1.33)

This process is repeated until the initial transition path for the aggregate capital
stock is consistent with the transition path implied by those beliefs and household
and firm optimization. TPI solves for the equilibrium transition path from Definition
4 by finding a fixed point in the time path of the economy.

1.6 Calibration

Use the following parameterization of the model for the problems below. Because
agents live for only three periods, assume that each period of life is 20 years. If the
annual discount factor is estimated to be 0.96, then the 20-year discount factor is
β = 0.9620 = 0.442. Let the annual depreciation rate of capital be 0.05. Then the
20-year depreciation rate is δ = 1−(1−0.05)20 = 0.6415. Let the coefficient of relative
risk aversion be γ = 3, let the productivity scale parameter of firms be A = 1, and
let the capital share of income be α = 0.35.

1.7 Exercises

1. Using the calibration from Section 1.6 and the steady-state equilibrium Defini-
tion 1, solve for the steady-state equilibrium values of {c̄i}3i=1, {k̄i}3i=2, w̄, and
r̄ numerically.

2. What happens to each of these steady-state values if all households become
more patient β ↑ (an example would be β = 0.55)? That is, in what direction

8For models in which agents live for S periods, m ≥ S so that the full distribution of capital at
time T can be solved for. In the 3-period-lived agent model described here, m ≥ 3.

9A check here for whether T is large enough is if Ki′

T = K̄ as well as Ki′

T+1 and Ki′

T+2. If not,
then T needs to be larger.
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does β ↑ move each steady-state value {c̄i}3i=1, {k̄i}3i=2, w̄, and r̄? What is the
intuition?

3. Use time path iteration (TPI) to solve for the non-steady state equilibrium
transition path of the economy from (k2,1, k3,1) = (0.8k̄2, 1.1k̄3) to the steady-
state (k̄2, k̄3). You’ll have to choose a guess for T and a time path updating
parameter ξ ∈ (0, 1), but I can assure you that T < 50. Use an L2 norm for
your distance measure, and use a convergence parameter of ε = 10−9. Use a
linear initial guess for the time path of the aggregate capital stock from the
initial state K1

1 to the steady state K1
T at time T .

4. Plot the equilibrium time path of the aggregate capital stock {Kt}T+5
t=1 . How

many periods did it take for the economy to get within 0.0001 of the steady-state
aggregate capital stock K̄? That is, what is T?
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