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Bootstrapping

1 Introduction to Bootstrapping

When conducting statistical inference we rarely know the exact finite sample

distributions of interest so we use approximate distributions and hope they

are helpful. We often use asymptotic theory (e.g., a Central Limit Theorem)

to obtain approximations. An alternative to asymptotic theory is the use of

so-called bootstrap methods. Rather than relying on a known asymptotic

distribution, the bootstrap relies on the known empirical distribution as an

approximation. Bootstrap methods are generally rather straightforward and

often provide better approximations than asymptotic methods. With the

increasing power of computers, bootstrap methods have become increasingly

popular.

The bootstrap approach began with a seminal paper by Bradley Efron

(Efron, 1979). An enormous literature has followed that original contribu-

tion. A good introductory reference is Efron and Tibshirani (1993)1

1In addition I have relied on Killian (2008).
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1.1 A General Statistical Problem

Consider a random sample, x = {x1, x2, . . . , xt}, from an unknown dis-

tribution, F : F → x = {x1, x2, . . . , xt}. We want to estimate a pa-

rameter of interest, θ = t(F ), [e.g.,µ =
∫∞
−∞(xdF (x)] on the basis of x:

θ = s(x) e.g.,x̄ = 1
n

∑n
i=1 xi]. We would like to know the properties of the

random variable θ̂. For example, what is the variance of θ̂?

Ideally, we would like to draw a number of additional random samples

from F , compute θ̂ in each case and use these estimates to investigate its

distribution. Unfortunately, it is generally impossible to do so.

1.2 The Bootstrap Analogy

The bootstrap is based on an analogy in which the observed sample data

take on the role of the population data. See figure 1 (adapted from Efron

and Tibshirani) in which the random sample given above comes from the

“Real World” but we do our analysis in the “Bootstrap World.”

From the original sample x = {x1, x2, . . . , xt} we construct a known

empirical distribution, Fn, and draw a random sample (with replacement):

x∗ = x∗1, x
∗
2, . . . , x

∗
n : Fn → x∗ = {x∗1, x∗2, . . . , x∗n}.

This is a bootstrap sample. Using this sample we compute θ̂∗ = s(x∗),

a bootstrap replication. Note that since the empirical distribution is

known we can draw as many bootstrap samples as we desire so we obtain B

bootstrap samples: x∗b, b = 1, 2, . . . , B. From these we compute B bootstrap

replications: θ̂b∗ = s(x∗b), b = 1, 2, . . . , B. We use the distribution of θ̂∗ to

draw inferences about the distribution of θ̂ .
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Figure 1: This figure illustrates the bootstrap analogy between the “Real
World” and the “Bootstrap World.” In the Real World, we have
a single random sample from an unknown population distribution
from which we want to calculate a statistic of interest. In the Boot-
strap World, we have a known empirical distribution from which
we obtain as many bootstrap samples and bootstrap replications
as desired.

As we can see, the critical step in this process is obtaining the empirical

distribution, Fn, from the observed sample, as an estimate of the unknown

population distribution, F . Everything else proceeds by analogy: Fn yields

x∗ by random sampling just as F yields x by random sampling, θ̂∗ is obtained

from x∗ in exactly the same way as θ̂ is obtained from x.

An obvious way to construct the empirical distribution from x is to assign

probability 1/n to each of the observed values of xi, i = 1, 2, . . . , n. Thus,

Fn(x) = #(xi ≤ x)/n, a step function. It can be shown that Fn is a consistent

estimate of F ; i.e., as n→∞, Fn(x) gets arbitrarily close to F (x).
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2 An Illustrative Example

Suppose we have a random sample of size n drawn from an unknown distri-

bution, F . F → x = {x1, x2, . . . , xt} and we are interested in properties, say

the variance, of the sample mean x̄ = 1
n

∑n
i=1 xi. Unfortunately, we cannot

obtain additional samples from F so how can we estimate the variance of

this statistic?

2.1 Traditional Approach

The traditional approach is to determine the variance of the sample mean

from V AR(x̄) = 1
n2

∑n
i=1 V AR(xi) = σ2

n
. But, since we do not know the

value of σ2 =
∑n

i=1
(xi−µ)2

n
, we replace it with the estimator σ̂2 =

∑n
i=1

(xi−x̄)2

n−1

resulting in V AR(x̄) = σ2

n
. I am using uppercase VAR to denote the unknown

true population variance and lowercase var to denote estimators of VAR. The

accuracy of var(x̄) as an estimate of V AR(x̄) depends on how accurate σ̂2 is

as an estimate of σ2. In many cases, σ̂2 may be unreliable.

2.2 Bootstrap Approach

Though we cannot resample from the true population distribution, the boot-

strap approach takes advantage of the fact that we can resample from the

known empirical distribution constructed from the original sample and de-

scribed above: Fn(x) = ](xi ≤ x)/n. The bootstrap estimate of the variance

of the sample mean is obtained by the following simulation algorithm:
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(1) Using a random number generator, create B bootstrap samples

by drawing samples of size n with replacement from the original sample:

x∗b = {x∗b1 , x∗b2 , . . . , x∗bn }, b = 1, 2, . . . , B

(2) For each bootstrap sample, compute bootstrap replications for x̄∗b:

x̄∗b 1
n

∑n
i=1 x

∗b
i , b = 1, 2, . . . , B

(3) From the B bootstrap replications in (2), calculate the simulated

bootstrap variance estimate:

var∗B(x̄) = 1
B−1

∑B
b=1{x̄∗b − [

∑B
b=1(x̄∗b/B]}2

Note the following:

i. As B approaches ∞, V AR∗B(x̄) approaches V AR∗(x̄). B = 200 is

enough to get a good estimate of the mean or variance. For bootstrap

confidence intervals, at least 1000 replications should be used.

ii. A 95% confidence interval for θ̂ can be obtained by taking the 2.5

and 97.5 percentiles of the distribution of the bootstrap replications

θ̂∗b , b = 1, 2, . . . , B. E.g., compute 1000 bootstrap replications of x̄∗b

and, ordering them from smallest to largest, take the 25th and 975th

elements as confidence interval endpoints.

iii. Bootstrap methods are generally quite useful but that ultimately de-

pends on the implicit assumption that the resampling properties of

(θ̂∗ − θ̂) are similar to the sampling properties of (θ̂ − θ). Note that

the population parameter θ is unknown in the Real World but the

pseudo-population parameter θ̂ is known in the Bootstrap World.
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3 Bootstrap Resampling in Linear Regression

Models with Nonstochastic Regressors

Consider a univariate regression model represented by:

y = Xβ + u (3.1)

where y is a T × 1 vector of observations on a dependent variable, X is

a T × R matrix of observations on R nonstochastic regressors including a

constant (vector of ones), β is an R × 1vector of regression coefficients, and

u is a T × 1 vector of errors. We assume that E(u) = 0 and E(uu′) =

σ2IT . Applying ordinary least squares (OLS), we obtain coefficient and error

variance estimates: β̂ = (X ′X)−1X ′y, σ̂2 = 1
T−R û

′û, where û = y −Xβ̂. We

can obtain bootstrap estimates of the regression coefficients as follows:2

i. For replication b, draw a random sample of size T from the OLS resid-

uals, û, to obtain the T × 1 vector u∗b which we add to Xβ̂ to get

y∗b :

y∗b = Xβ̂ + u∗b

(I have changed notation slightly.)

ii. Obtain bootstrap estimates as

β̂∗b = (X ′X)−1X ′y∗b = β̂ + (X ′X)−1X ′u∗b

Note that we don’t need to explicitly compute y∗b if we are only inter-

ested in β̂∗b .

2We will look at obtaining bootstrap estimates of the error variance below since there
is an additional consideration we must take into account.
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iii. Repeat steps (i) and (ii) for b = 1, 2, . . . , B and use the resulting boot-

strap estimates β∗1 , β
∗
2 , . . . , β

∗
B to construct the empirical distribution of

the estimator β̂∗.

As we will see below, more care must be taken when we have lagged

endogenous variables on the right-hand-side of a regression equation in order

to preserve the dependence that exists in the data. There is much more

that could be said about obtaining bootstrap samples in other cases but we

will spend the rest of the notes looking only at the case of bootstrapping in

structural vector autoregression (SVAR) models.

4 Bootstrapping in SVAR Models

In a recent paper, Phillips and Spencer (2011) examined the widespread use of

bootstrapping to obtain confidence intervals (CIs) for impulse response func-

tions (IRFs) in SVAR models. They demonstrated that the methods com-

monly used in the literature result in systematic bias in bootstrapped confi-

dence intervals. Furthermore, they showed how to reduce the bias through a

straightforward scale adjustment. The problem arises because of a bias in the

usual bootstrap estimate of the VAR error covariance matrix which is used in

computing the bootstrap IRF CIs. We will follow the paper closely in looking

at the source of this bias which will suggest the appropriate correction.3

3Much of what follows is taken directly from Phillips and Spencer (2011)

7



4.1 A Source of Bias

4.1.1 Standard Regression Models

The simplest way to illustrate the bias under investigation is to examine

a standard linear regression model with nonstochastic regressors. We first

consider a univariate regression model represented by (4.1)

y = Xβ + u (4.1)

Applying ordinary least squares (OLS), we obtain coefficient and error vari-

ance estimates: β̂ = (X ′X)−1X ′y, σ̂2 = 1
T−R û

′û, where û = y − Xβ̂. The

indicated degrees of freedom correction makes σ̂2 an unbiased estimator for

σ2.

To help us understand the key argument to follow, it is useful to interpret

the degrees of freedom adjustment from the perspective that it is necessary

to compensate for the fact that the OLS residuals tend to be “smaller” than

the error terms. Note that the expected value of the average squared error

is σ2; i.e., E{u′u
T
} = σ2. On the other hand, E{ û′û

T
} = T−R

T
E{u′u

T
}, which

reflects that, on average, the squared residuals are T−R
T

times as large as the

squared errors4. Thus, to obtain an unbiased estimate, we must rescale each

residual by
√

T−R
T

and then compute the average squared rescaled residual

giving the usual unbiased estimate for σ2, σ̂2 = 1
T−R û

′û.

Now consider obtaining a bootstrap variance estimate in this simple case.

The bootstrap methodology relies on an analogy between the unknown pop-

ulation probability distribution of the “real world” and the known empirical

4See Davidson and MacKinnon (1993, pp. 69-70.)
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distribution in the “bootstrap world.”5 The bootstrap analyst hopes to learn

about the population distribution of σ̂2− σ by examining the distribution of

σ̃2 − σ̂ where σ̂2 is the “pseudo-population” variance of the empirical distri-

bution (not a random variable in the bootstrap world) and σ̃2 is a candidate

bootstrap variance estimate (which, of course, is a random variable in the

bootstrap world).6 Typically, this is done by drawing many samples from the

pseudo-population given by the original sample. Because we can resample as

many times as we want, we can estimate the mean of σ̃2 − σ̂ and, thus, the

bias of σ̃2 using Monte Carlo experiments.

Pursuing this bootstrap analogy and recalling the insight discussed above,

we might expect an analogous degrees of freedom adjustment to be helpful

for bootstrap variance estimates. This has been confirmed for the simple

regression model by Freedman and Peters (1984, p. 99) and Peters and

Freedman (1984, p. 408).

Suppose we obtain bootstrap estimates of the error variance as follows.

For bootstrap replications b = 1, . . . , B, generate

y∗b = Xβ̂ + u∗b (4.2)

where the elements of u∗b are drawn with replacement from the OLS residuals,

û. Then, apply OLS to equation (4.2) to get bootstrap estimates of β̂ (not

β), which we denote β̃b and bootstrap residuals, ũb. In the bootstrap, the

variance estimate, σ̃2
b , is an estimate of σ̂2 (not σ2), the “population” error

variance in the pseudo-population given by the error variance of the original

5See (Efron and Tibshirani, 1993, especially Chapter 8), for discussion of this analogy.
6So, in the bootstrap world,σ̃2 is an estimate of σ̂2.
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OLS residuals, û. The usual bootstrap variance estimate is given by σ̃2
b,1 =

1
T−R ũ

′
bũb.

In this case, we can get some analytical insight for the properties of σ̃2
b,1 by

conditioning on the unknown population distribution. Proceeding as above,

we note that though E{ û′û
T−R} = σ2, E{ ũ

′
bũb

T−R} = T−R
T
E{u

∗
b
′u∗b

T−R } = T−R
T
σ2 since

the elements of u∗b are drawn randomly from û. This reflects that, on average,

the squared bootstrap residuals are T−R
T

times as large as the squared OLS

residuals which are the pseudo-population errors. Consequently, we suggest

that a better bootstrap estimate might be given by σ̃2
b,2 = 1

(T−R)2
ũ′bũb =

1
T−R σ̃

2
b,1. This is the same rescaling suggested by Freedman and Peters (1984)

and Peters and Freedman (1984).

If this analogy holds exactly, we would expect the size of the (propor-

tional) bias for the natural estimator to be −R/T 7. While this vanishes

asymptotically, it can be important in small samples when R is large rel-

ative to T . To illustrate, we conduct a Monte Carlo experiment in which

we simulate obtaining bootstrap estimates of the error variance in a uni-

variate regression model like (4.1). We estimate models with nine regressors

including a constant term, R = 9, for three sample sizes: T = 30, 50, 1008.

Consequently, the expected bias for σ̃2
b,1 is -30%, -18% and -9% respectively.

7It should be noted that bias arising from maximum likelihood estimation (MLE) of
the error variance will be even larger. As is well known, the MLE of σ2, σ̆2 = 1

T û
′û,

is biased; i.e., E{σ̆2} = T−R
T σ2. Thus, the proportional bias is −R/T . Now, when we

bootstrap and obtain the MLE of σ̆2
b , σ2, ˜̆σ2

b = 1
T ũ
′ũ, the bias is magnified since we have

a biased estimate of a biased estimate. ˜̆σ2
b =

(
T−R
T

)2
σ̃2
b,2, so E{˜̆σ2

b} =
(
T−R
T

)2
σ2 and

the expected proportional bias is
(
T−R
T

)2 − 1 = R2−2TR
T 2 which is negative and larger (in

absolute value) than −R/T .
8The values of the regressors are 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 with the first

element being the constant term; σ2 = 0.81.
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Table 1: Bootstrap error variance estimates in standard univariate linear re-
gression model with R = 9; number of Monte Carlo trials = 1000,
number of bootstrap draws = 200. True value of variance = 0.81.

Estimator Sample Size Mean Estimate Proportional
Difference
(−R/T )

Estimated Biasa

σ̂2 30 0.8051
σ̃2
b,1 30 0.5633 -30.0% -30.03%

σ̃2
b,2 30 0.8047 0 -0.05%

σ̂2 50 0.8053
σ̃2
b,1 50 0.6603 -18.0% -18.01%

σ̃2
b,2 50 0.8053 0 0.00%

σ̂2 100 0.8054
σ̃2
b,1 100 0.7327 -9.0% -9.03%

σ̃2
b,2 100 0.8052 0 -0.02%

a
The estimated bootstrap bias is the average difference between the relevant bootstrap error

variance estimate and σ̂2, the pseudo-population variance across the 1000 Monte Carlo trials.

For each sample size, we draw 1000 samples of size T from a normal dis-

tribution with mean zero and variance 0.81. For each of these Monte Carlo

draws we generate observations for y, estimate (4.1) by OLS, and compute

the usual population-unbiased estimate of the error variance, σ̂2. The aver-

age estimate is given in Table 1. To examine the bias of the two bootstrap

error variance estimates, σ̃2
b,1 and σ̃2

b,2,9 we take each of the 1000 Monte Carlo

samples and obtain 200 bootstrap estimates in each case. The average values

are reported in Table 1 for our three sample sizes. We call this the estimated

bootstrap bias.

The results in Table 1 confirm our expectation very nicely. The “natural”

bootstrap estimator, σ̃2
b,1, has bias approximately equal to −R/T while σ̃2

b,2

9Note that Table 1 reports the bias relative to, σ̂2, the pseudo-population variance.
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is approximately unbiased.

This bias in the standard bootstrap “error” variance carries over exactly

to the case of a multivariate seemingly unrelated regression model with non-

stochastic regressors. To confirm the theory, we have conducted simple Monte

Carlo experiments similar to those undertaken for the univariate regression

model discussed above. To save space, we do not report the results here but

simply indicate that the conclusions are the same.10

4.1.2 Autoregressive Models

Consider a univariate AR(p) with a constant term, ν, so that R = p+ 1:

yt = ν + φ1yt−1 + · · ·+ φpyt−p + ut; t = 1− p, . . . , 0, 1, . . . , T (4.3)

where ut is white noise with variance σ2 and T is the number of usable ob-

servations. Because the regressors are stochastic, the finite sample theory of

the previous section does not apply. However, following Stine (1987, p.1074)

and Berkowitz and Kilian (2000, p. 5), we might speculate (correctly) that

similar bias problems exist for bootstrap estimators of the error variance in

this case.

Since analytical results are not available, we examine the finite-sample

bias issue for the AR(p) model using a Monte Carlo exercise similar to the

one described above. We generate data for, and estimate, a model like (4.3)

in which p = 8 so R = 9.11 For each of three sample sizes, T = 30, 50, 100, we

10The results are reported in an unpublished appendix available on request.
11The model coefficients are 0.008, 0.25, 0.11, -0.03, -0.004, -0.12, 0.03, -0.02, -0.08 with

the first element being the constant term; σ2 = 0.81.
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Table 2: Bootstrap error variance estimates in an AR(8) model with a con-
stant term (R = 9); number of Monte Carlo trials = 1000, number
of bootstrap draws = 200. True value of variance =0.81.

Estimator Sample Size Mean Estimate Proportional
Difference
(−R/T )

Estimated Biasa

σ̂2 30 0.8476
σ̃2
b,1 30 0.6178 -30.0% -27.11%

σ̃2
b,2 30 0.8826 0 4.13%

σ̂2 50 0.8129
σ̃2
b,1 50 0.6766 -18.0% -16.77%

σ̃2
b,2 50 0.8252 0 1.51%

σ̂2 100 0.8120
σ̃2
b,1 100 0.7418 -9.0% -8.65%

σ̃2
b,2 100 0.8152 0 0.39%

a
The estimated bootstrap bias is the average difference between the relevant bootstrap error

variance estimate and σ̂2, the pseudo-population variance across the 1000 Monte Carlo trials.

draw 1000 samples for ut of size T + p from a normal distribution with mean

zero and variance 0.81. For each of these Monte Carlo draws we generate

observations for y, estimate (4.3) by OLS, and compute the usual estimate of

the error variance, σ̂2. The average estimate is given in Table 2. To examine

the bias (relative to σ̂2) of the two bootstrap error variance estimates, σ̃2
b,1

and σ̃2
b,2, we obtain 200 bootstrap estimates for each of the Monte Carlo

samples12. The average values are reported in Table 2 for each of our three

sample sizes.

The results are quite informative. The heuristically expected bias for

the corresponding standard linear regression is a rather good guide for the

bias in the AR(p) model. We confirm that the bootstrap estimator of the

12For each bootstrap iteration, we obtain the initial p observations {y−p−1, . . . , y0} by
drawing (with replacement) from the original generated sample {yt}T−p+1.
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error variance given by σ̃2
b,1is biased and thus likely to result in significant

distortion when the number of slope coefficients is large relative to the sample

size.

Proceeding by analogy, we expect these bias results to carry over to the

case of a (non-structural) VAR(p) with K variables. In that case, our interest

is the K ×K error (innovation) covariance matrix Σ. Assuming a constant

term, the usual degrees-of-freedom-corrected OLS estimator for Σ is Σ̂ =

1
T−R Û

′Û where Û is the T ×K matrix of OLS residuals and R = Kp+1. The

“natural” but perhaps biased bootstrap estimator of Σ̂ is Σ̃b.1 = 1
T−R Ũ

′
bŨb

where Ũb is the matrix of bootstrap residuals from the bth bootstrap iteration.

The degrees of freedom adjusted (DFA) bootstrap estimator of Σ is Σ̃b.2 =

T
(T−R)2

Ũ ′bŨb.

We have investigated the bootstrap error variance bias for a two-equation

VAR(8) model with a constant term using Monte Carlo methods similar to

those described above and find the bias to be quite close to the bias expected

from the above heuristic analysis above. To conserve space, we do not report

the results here since they are quite similar to those reported for the AR(8)

model above.13 In particular, the bias for Σ̃b.1 is approximately −Kp+1
T

where

K is the number of equations (variables) in the VAR(p). For a two-equation

VAR(8) model, this implies an approximate bias of -17% for each element of

Σ when T = 100.14

13The results are reported in an unpublished appendix available on request.
14Note that if, for this VAR model, we had computed MLE rather than OLS estimates

of Σ in both the initial and bootstrap stages, the approximate bias for the elements of the
bootstrap estimate of Σ would have been magnified to -31%. See footnote 11.
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4.2 Bootstrapping IRFs for SVARs

The downward bias of the standard bootstrap estimator of the VAR error

covariance matrix is of particular concern when we are interested in drawing

inferences about IRFs from a SVAR model since the IRFs are nonlinear func-

tions of both VAR slope parameters and the elements of the error covariance

matrix.15. In this section we show how bias in the bootstrap estimate of the

VAR error covariance matrix affects bootstrap IRFs and, thus, bootstrap

CIs.

To estimate a SVAR model of the behavior of a K×1 vector of variables,

{yt}, and the corresponding IRFs, we begin by specifying a finite-order re-

duced form VAR model which can always be estimated:

B(L)yt = ut (4.4)

where B(L) is a matrix of p-order polynomials in the lag operator, L, ut is

a vector of K reduced form errors, and E{UtU ′t} = Σ. In general, consistent

OLS estimates of B(L) and Σ can be obtained: B̂(L) and Σ̂ = 1
T−R Û

′Û ,

where Û , is the T ×K matrix of OLS residuals, and R = Kp + 1 since we

assume a constant term.

The reduced form moving average representation is obtained by inverting

(4.4):

yt = B(L)−1ut = C(L)ut (4.5)

15Other objects of frequent interest that are also nonlinear functions of VAR slope
parameters and elements of the error covariance matrix are forecast error variance decom-
positions and measures of predictability. Thus, related bootstrap confidence or prediction
intervals would also suffer from the bias we discuss here. See Inoue and Kilian (2002).
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where C0 = I, the identity matrix. The shocks in this representation are one-

step-ahead forecast errors and do not, in general, correspond to structural

economic shocks for which we want to obtain impulse response functions.

We assume that there exists a structural moving average representation

of the model from which the IRFs can be obtained:

yt = A(L)εt (4.6)

where εt is a vector of K structural shocks and we make the standard assump-

tion that E{εtε′t} = IK . This assumption provides a normalization as well as

a set of identifying restrictions. The elements of the matrix polynomial A(L)

give the impulse response functions: ai,j,` i, j = 1, . . . , K, ` = 0, 1, . . . indi-

cates the response of variable i in ` periods to a one unit (standard deviation)

movement in the jth structural shock today.

Though the IRFs are frequently the objects of interest in macroeconomic

analysis, they cannot generally be estimated directly from time series data

since the SVAR model (4.6) is not identified without further restrictions.

However, equating terms in (4.4) and (4.6) allows us to conclude the follow-

ing:

ut = A0εt (4.7)

A` = C`A0, ` = 1, 2, . . . (4.8)

Thus, it is clear that knowledge of the K2 elements of A0 is sufficient to

obtain the IRF.

From (4.7) and the assumption that E{εtε′t} = IK , we infer the key

relationship between the covariance matrices of the structural and reduced
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form errors:

Σ = A0A
′
0 (4.9)

Symmetry of Σ provides K(K+1)
2

restrictions on A0. With K(K−1)
2

addi-

tional restrictions, A0 can be identified and IRFs computed. Equations (4.8)

and (4.9) assure us that the estimated IRFs depend on estimates of B(L)

and Σ. I.e., âi,j,` = g(β̂, σ̂), i, j = 1, . . . , K, ` = 1, 2, . . . where β̂ = vec(B̂), a

K(Kp + 1) × 1vector, and σ̂ = vech(Σ̂), a K(K+1)
2
× 1 vector and the form

of the nonlinear function g depends on the identification strategy. Conse-

quently, the properties of the IRFs depend on the properties of β̂ and σ̂.

Similarly, the properties of the bootstrap IRFs depend in the same way on

the properties of the bootstrap estimates of β̃ and σ̃: ãi,j,` = g(β̃, σ̃), i, j =

1, . . . , K, ` = 1, 2, . . . .

We can see from this that there are several potential sources of bias for

the bootstrapped IRFs and, thus, bootstrap confidence intervals for the orig-

inal IRFs. The source we focus on here arises when the bootstrap estimate

of sigma, σ̃, is biased for σ̂, the elements of the pseudo-population covari-

ance matrix. How much difference does the appropriate degrees or freedom

adjusted bootstrap estimation of the error covariance matrix make for boot-

strap estimates of the IRF? We provide some intuitive analytics to address

this question.

From equation (4.8) we infer that the bootstrap estimates of the IRF are

given by (4.10)

Ã` = C̃`Ã0, ` = 1, 2, . . . (4.10)

where Ã`, C̃`, and Ã0 are bootstrap estimates. Any bias in Ã0 will, thus, likely
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carry over to all the Ã`. We see from equation (4.9) that Ã0 depends only

on the bootstrap estimate of Σ, Σ̃, which, based on results reported above,

we expect to be systematically biased. Consequently, it will be instructive

to consider how potential bias in the bootstrapped estimates of the VAR

covariance matrix can affect the bootstrapped IRF.

The original sample estimate of the VAR error covariance matrix is Σ̂ =

1
T−R Û

′Û . As in the previous section, we consider two alternative bootstrap

estimates of Σ̂ based on the pseudo-population. The standard bootstrap

estimate is given by Σ̃b,1 = 1
T−R Ũ

′
bŨb where Ũb is the T ×K matrix of boot-

strap residuals from the bth bootstrap iteration. The DF-adjusted bootstrap

estimate is given by Σ̃b,2 = T
(T−R)2

Ũ ′bŨb. So,

Σ̃b,1 = (1 + b)Σ̃b,2 (4.11)

where b = −R/T is the proportional difference between the standard and

DF-adjusted bootstrap estimates of Σ̂. Based on the results of the previous

section (including the Monte Carlo evidence alluded to), we might expect b

to approximate the bias in Σ̃b,1.

We can use equation (4.11) to derive the implied proportional difference

between the corresponding bootstrapped IRFs. Equation (4.9) implies that

Σ̃b,1 = Ã0,1Ã
′
0,1 and Σ̃b,2 = Ã0,2Ã

′
0,2. So, from (4.11) we have Ã0,1Ã

′
0,1 =

(1 + b)Ã0,2Ã
′
0,2 which, in turn, implies that

Ã0,1 =
√

1 + bÃ0,2 = (1 + a)Ã0,2 (4.12)
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Equating
√

1 + b and 1 + a in (4.12) implies that b and a are related by

a =
√

1 + b− 1 (4.13)

Since −1 < b = −R/T < 0, we see that b < a < 0. As T increases without

bound, b and a approach zero so the standard and DF-adjusted IRFs are

asymptotically equivalent.

Now, consider how this proportional difference in the bootstrap estimate

of Â0 affects the alternative bootstrap IRFs. First, it is important to recog-

nize that Ĉ` does not depend on which bootstrap estimate of Σ̂ we choose.

Thus, as implied by equation (4.8), the two IRFs are given by

Ã`,j = C̃`Ã0,j, j = 1, 2, ` = 1, 2, . . . (4.14)

In particular,

Ã`,2 = C̃`Ã0,2 = C̃`
1

1 + a
Ã0,1 =

1

1 + a
Ã`,1 (4.15)

where the second equality follows from (4.11) and the final equality follows

from (4.10). From equation (4.15), it follows that the proportional difference

between the two IRFs is the same for all values of `:

Ã`,1 − Ã`,2
Ã`,2

= a, ` = 1, 2, . . . (4.16)

Thus, the bootstrap IRF proportional difference is constant and equal to

a for the entire IRF horizon. So, for example, if we have a SVAR model with

K=2, p=8, T=100 and a constant term, the elements of the standard boot-
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strap covariance matrix estimate is 17% less than the DF-adjusted estimate

and the corresponding IRFs differ by 9% of the DF-adjusted IRF.16

4.3 An Example

As indicated earlier,17 the procedures that generate this bias seem to be

quite common in the empirical SVAR literature. In this section we illustrate

its effect in practice by replicating the biased results obtained in a single

influential paper by Christiano, Eichenbaum, and Evans (1999) (CEE). We

then compute the corresponding DF-adjusted IRF and associated bootstrap

confidence intervals to draw our comparison. Finally, we examine coverage

accuracy by comparing the coverage rates for standard bootstrap CIs with

those for the DF-adjusted CI.

In their paper, CEE examine the effects of monetary policy shocks on sev-

eral economic variables of interest using models imposing a recursive struc-

ture to identify the relevant shocks.18 Their first benchmark model includes

a constant term and four lags (p=4) of seven variables (K=7) with the fed-

eral funds rate as the chosen monetary policy instrument. They estimate

their models using quarterly data over the period 1965:3-1995:2. Given the

loss of observations due to the four lags in the VAR, T=116 in our notation.

We replicate their results by estimating their model over the same sample

16These are the implied values of b and a in percentage terms. As indicated above,
b = −R/T , and a can be computed from (4.13)

17See footnote 7 above
18The seven variables they include, in recursive order, are the log of real GDP, the log of

the implicit GDP deflator, a series of smoothed changes in a commodity price index, the
federal funds rate, the log of nonborrowed reserves plus extended credit, the log of total
reserves, and the log of M1.
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period.19 For illustrative purposes, we report only the IRF indicating the

effects of a negative monetary policy shock on output. While this is an IRF

of particular interest, the same bias will be present in all the other 48 IRFs

as well.20 As seen in Figure 2 here and Figure 2 of Christiano, Eichenbaum,

and Evans (1999, p. 86), given a positive federal funds rate shock, “after a

delay of 2 quarters, there is a sustained decline in real GDP ” (p. 87). We

note that CEE use MLE to estimate the VAR error covariance estimate so

the estimated IRF will be biased. Furthermore, we see that the bootstrap

confidence intervals reflect considerable asymmetry which, we shall see mo-

mentarily, is partially due to bias in the confidence intervals arising from

biased bootstrap IRF estimates.

To illustrate the effect of bias due to MLE and the further bias due to

the CEE bootstrap IRFs, we estimate the CEE model once again but this

time including the degrees of freedom correction we suggest in this paper.

These results for the first-stage IRF and the bootstrap confidence intervals

are also reported in Figure 2. We first notice that the fundamental conclusion

regarding the IRF is unchanged: a contractionary federal funds rate shock

will, after a lag, have a sustained negative effect on real GDP.21 We also

19Indeed, we have estimated the CEE model using their data which Larry Christiano
has generously made available on his website.

20This is because, as equation (4.11) shows, the proportional difference between the
bootstrap estimates of the A0 matrix is a multiplicative scalar that affects all elements of
the matrix the same way. Equation (4.13) shows that this same proportional difference will
carry over to every IRF. The complete results are reported in an unpublished appendix
available on request

21Indeed, we will always draw the same conclusion about statistical significance when
our interest is in whether or not the IRF is significantly different from zero. This is a conse-
quence of the fact, illustrated in the previous section equation (4.15), that the DF-adjusted
bootstrap IRF is proportional to the standard IRF at all horizons with the constant of
proportionality positive but less than one. Accordingly, both confidence interval bounds
will cross the horizontal axis (zero line) at exactly the same horizons. This implies that the
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Figure 2: Impulse response functions showing the effect of a contractionary
monetary policy on real GDP with 95% confidence intervals. The
solid line gives the original MLE IRF and the long-dashed bold
line gives the OLS IRF; CEE use MLE. The dotted lines give the
MLE bootstrap 95% confidence intervals and the dashed lines give
the DF-adjusted 95% confidence intervals.
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notice that using the OLS rather than the MLE estimate of original error

covariance matrix causes the corresponding OLS IRF to lie entirely below

the MLE IRF obtained by CEE.

In addition, we see that the confidence intervals also shift significantly

when we adjust the degrees of freedom in the bootstrap estimates of the

range over which the IRF is significantly greater or less than zero will be the same whether
or not a degrees of freedom adjustment is applied. Adjusting the degrees of freedom can
lead to a reversal of conclusion, however, if the null hypothesis takes on a value other than
zero.
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error covariance matrix. We note three consequences. First, we see that for

much of the time horizon, the DF-adjusted OLS IRF actually lies below the

CEE 95% confidence intervals22 Second, we see that adjusting the degrees

of freedom has greatly reduced the asymmetry in the confidence intervals.

Third, we notice that between 2 and 11 quarters, the upper 95% confidence

bounds are farther away from zero after degrees of freedom adjustment. This

provides stronger evidence supporting the conclusion that a contractionary

monetary policy has a significant negative effect on output over that horizon.

Since part of the distortion in the CEE results is a consequence of their

choice to use MLE estimates of the error covariance matrix, we also illustrate

how much distortion remains when we use OLS estimates. The results are

reported in Figure 3. In the typical approach incorporating the natural OLS

degrees of freedom correction, the original IRF is already DF-adjusted so we

only have a single IRF estimate. However, the typical procedure does result

in biased bootstrap confidence intervals. As in Figure 2, we again see that

the typical biased procedure results in quite asymmetric confidence intervals

which are, in part, a consequence of the bias; the DF-adjusted confidence

intervals exhibit much less asymmetry. Also, as noted in the discussion of

Figure 2, over a range of intermediate horizons, the upper bound of the

DF-adjusted confidence intervals lie below their biased counterparts giving

us greater confidence in our conclusion that a monetary contraction has a

significant negative effect on output.

These examples illustrate that adjusting the degrees of freedom in both

the original IRF and especially in the bootstrap confidence interval estimates

22This leads us to conjecture that the often puzzling asymmetry in IRF CIs found in
the literature is largely due to the bias documented in this paper.
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Figure 3: Impulse response function showing the effect of a contractionary
monetary policy on real GDP with 95% confidence intervals. The
solid line gives the original OLS IRF. The dotted lines give the typ-
ical bootstrap 95% confidence intervals not adjusted for degrees of
freedom and the dashed lines give the DF-adjusted 95% confidence
intervals.
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can remove distortions that change the quantitative (if not qualitative) con-

clusions when SVAR models are used.

Of course, for the degrees of freedom adjustment we recommend to be of

practical value, we must have confidence that it will result in greater coverage

accuracy for the resulting CIs. Accordingly, we conclude this section by re-

porting the results of a series of Monte Carlo experiments that investigate the

coverage rates of alternative bootstrap CIs. To avoid the potential arbitrari-

ness of an ad hoc data generating process (DGP), we treat the benchmark
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CEE model as our initial DGP from which we obtain the “true” IRF.23 Us-

ing that model and assuming jointly normal errors with the CEE estimated

covariance matrix, we generate 1000 Monte Carlo trials of the same length

as the CEE sample. Once again, to keep the analysis focused, we look only

at the IRF representing the effect of a negative monetary policy shock on

output.24 For each Monte Carlo trial, we then take 200 bootstrap replica-

tions and construct three sets of 95% bootstrap IRF confidence intervals:

MLE (following CEE), standard OLS, and DF-adjusted. We then report the

coverage rates25 for each of these respective confidence intervals across the

1000 trials.

Figure 4 reports the results for the benchmark CEE model DGP along

with a reference line at 0.95 reflecting the 95% nominal value of the confidence

intervals. We label the methods: MLE, OLS, and DFA. We notice that none

of the methods yields coverage rates that are consistently near the ideal

value of 0.95 in this baseline case but the DFA method we recommend is

uniformly superior to the traditionally-used alternatives. Coverage rates for

the DFA method fall to about 0.65 but are generally above 0.75. The MLE

has particularly poor coverage rates for intermediate horizons, falling as low

as 0.2 while coverage rates fall in between for the OLS method. These poor

coverage rates may reflect the fact that the bias we account for here is not

23Kilian and Chang (2000) argue that the results of studies that focus on simple ad hoc
(e.g., bivariate) VAR models may not generalize to higher dimensional models that are
typical of actual applied work. In their study investigating coverage rates, they use three
leading models in the literature, including the CEE model, as data generating processes.

24For comparison, see the upper left graph in Figure 3 of Kilian and Chang (2000).
25By coverage rate we mean the fraction of Monte Carlo trials for which the respective

confidence interval includes the true IRF. We evaluate the coverage rate at each point of
the IRF horizon.
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Figure 4: A comparison of coverage rates for three alternative 95% bootstrap
confidence intervals: MLE, OLS, and DFA. Applied to the impulse
response function showing the effect of monetary policy on output
in the baseline CEE model as originally parameterized.
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the only bias affecting the results. Furthermore, it would not be appropriate

to generalize that coverage rates for all IRFs are likely to be as poor as those

reported in Figure 4. The evidence reported by Kilian and Chang (2000) for

the CEE model suggests that the IRF representing the effects of a monetary

policy shock on output exhibited lower coverage rates than other IRFs. We

have confirmed this for our case.26 It turns out that the IRF we are most

interested in has the poorest coverage rates.

26In the appendix available from the authors, we report coverage rate results for all the
IRFs corresponding to the effects of a monetary policy (federal funds rate) shock. For the
other IRFs as well, the DFA method yields higher coverage rates.
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To investigate the robustness of the finding that the DFA method gives

greater coverage accuracy, we consider alternative variations on the bench-

mark CEE model. We first consider alternative parameterizations of the

error covariance matrix and then examine variation in key slope coefficients.

We also consider the effect of increasing the sample size and the consequences

for DGPs with non-normal errors.

The first three alternative DGPs retain the slope parameter of the baseline

CEE model but change the values of the elements of the error covariance

matrix. The first of these doubles all those values, the second halves them,

and the third sets all the off-diagonal elements to zero. To conserve space,

and since the coverage rates were only marginally affected in each of these

three cases, the results are not reported here but are available from the

authors in an unpublished appendix. As in the baseline model, coverage

rates were generally poor but the DFA method improved considerably on

the OLS method and especially the MLE method.

Because of the impracticality of varying the very large number of slope

parameters for the seven-equation, four-lag CEE model in a broadly system-

atic way, we focus only on the parameters that are most likely to affect the

IRF of principal interest. In particular, we vary the first order autoregressive

and cross-autoregressive coefficients relating to output and the federal funds

rate. We first try a parameterization which is the same as the baseline model

except that it halves the benchmark values of these four first order param-

eters. We also examine two further parameterizations which halve only the

first order autoregressive slope coefficients for output and the federal funds
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rate respectively. The result for the third of these is reported in Figure 5.27

We see that halving the size of the coefficient on the first lagged value of the

federal funds rate results in considerable improvement in coverage rates for

all three methods with the performance of the recommended DFA method

being quite good. For all horizons, the coverage rate is above 0.85 and often

above 0.9. The coverage rates for the other parameterizations also improve

relative to the baseline model with the halving of all four of the relevant

first order slope coefficients producing slightly better coverage rates and the

model that halves only the first order coefficients producing slightly better

coverage rates and the model that halves only the first order autoregressive

coefficient on output doing a little worse than the results reported in Figure

5.

Since the bias we are investigating shrinks as sample size increases, we

examine the effect on coverage rates of increasing sample size in the baseline

CEE model. We first double the usable CEE sample size (T ) from 116 to

232 and report the results in Figure 6. Not surprisingly, when compared

with Figure 4, we see that the coverage rates improve considerably, with

rates for the DFA method exceeding 0.8 for most of the horizon. The DFA

method also continues to be greatly superior to the OLS and MLE methods

for estimating the bootstrap error covariance matrix. It is interesting to note

that this larger sample size is typical of most recent empirical work using

post-war U.S. quarterly data. When we quadruple the sample size (T=464),

the coverage rate for the DFA method generally exceeds 0.90.28

As a final consideration, we consider DGPs with non-normal errors. In

27The others are included in the unpublished appendix available on request.
28Results are included in the unpublished appendix.

28



Figure 5: A comparison of coverage rates for three alternative 95% bootstrap
confidence intervals: MLE, OLS, and DFA. Applied to the impulse
response function showing the effect of monetary policy on output
in the CEE model setting the first order autoregressive slope co-
efficient for the federal funds rate at half its size in the baseline
model.
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particular, we are interested in what happens if the errors come from a distri-

bution with fatter tails than the normal. We investigate errors generated by

two t-distributions, one with ten degrees of freedom and one with five degrees

of freedom. The results for the latter are given in Figure 7. We see that cov-

erage rates improve, relative to Figure 4, for all three methods with the DFA

method maintaining its superiority. It exhibits coverage rates generally quite

close to the nominal level of 0.95. The results for the t-distribution with ten

degrees of freedom (reported in the unpublished appendix) also represent an

29



Figure 6: A comparison of coverage rates for three alternative 95% bootstrap
confidence intervals: MLE, OLS, and DFA. Applied to the impulse
response function showing the effect of monetary policy on output
in the CEE model with the sample size doubled (T=232).
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improvement over the baseline case but not as much as we see in Figure 7.

In summary, we conclude that the straightforward DFA method for ob-

taining bootstrap estimates results in considerably improved coverage accu-

racy. Since the bias we discuss here reflects only one of several potential

sources of bias, we are not surprised to see that even the DFA method often

results in poor coverage accuracy. However, the evidence reported here sug-

gests that, as sample size approaches that of most modern macroeconomic

research, and/or if the distribution generating the errors has fatter tails than

a normal distribution, coverage rates for the DFA method may not only be
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Figure 7: A comparison of coverage rates for three alternative 95% bootstrap
confidence intervals: MLE, OLS, and DFA. Applied to the impulse
response function showing the effect of monetary policy on output
in the CEE model with errors generated from a t-distribution with
5 degrees of freedom.
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improved but become reasonable. Furthermore, these potential gains are

available with a simple degrees of freedom adjustment.

4.4 Conclusion

We have discussed a commonly occurring source of bias in bootstrap esti-

mates of confidence intervals for IRFs in SVARs arising from the downward

bias in the traditional bootstrap estimate of the VAR covariance matrix.

Since the bootstrap IRFs depend on these biased estimates, they are system-
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atically distorted along with the implied bootstrap IRF percentile confidence

intervals. This distortion is potentially large but, fortunately, can be readily

ameliorated by an additional degrees of freedom adjustment when estimating

the VAR covariance matrix. Furthermore, the results of a series of Monte

Carlo experiments suggest that we can expect the degrees of freedom ad-

justed confidence intervals to exhibit improved coverage accuracy relative to

traditionally-used confidence intervals.

Exercises

Homework 1

Using the bootstrap to obtain confidence bands for IRFs

Obtain the 95% confidence bands for the four IRFs in Problem 2 from the

Structural VAR chapter. Use the degrees of freedom adjustment suggested

in Phillips and Spencer (2011).
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