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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are models of gen-

eral equilibrium where the economy’s equilibrium changes over time due to

stochastic shocks.

1.1 General Equilibrium

A general equilibrium is a situation for the economy as a whole where all

markets are in equilibrium, with supply equaling demand at the prevailing

prices. A competitive equilibrium is a special case of general equilibrium

where we satisfy certain conditions.

Under the right set of conditions a competitive equilibrium is identical to

the solution to a central planner’s problem. Many early DSGE models were

set up and solved this way. However, the necessary conditions for this equiv-

alence to hold often do not apply in current state-of-the-art macro models.
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For example, models where firms are monopolistically competitive will not

generate this equivalence. Solving a social planner’s problem for these mod-

els will yield the socially optimal outcome, but this is not the outcome that

will be generated by a decentralized set of markets and optimizing agents.

For that reason, most current DSGE models specify and solve a competitive

equilibrium.

Definition 1. A competitive equilibrium is a set of allocations, {xi}Ii=1, and

prices, {pi}Ii=1, for each factor of production and consumable such that:

i. households optimize utility,

ii. firms optimize profits,

iii. the government meets its budget constraints, and

iv. all factor and goods markets clear

1.2 Walras’ Law

Walras’ Law is a useful tool in general equilibrium modeling. It states that

if an economy has N markets and N − 1 of those markets are in equilibrium,

then the remaining market must also be in equilibrium. This is useful because

it means we need only incorporate the market clearing conditions from N−1

markets in our model, and we can ignore one market by invoking Walras’

Law. For example, if our model has a goods market, a labor market, and a

market for capital, we could ignore the goods market clearing condition. We

would need only to incorporate the two factor market clearing conditions.
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1.3 DGE and DSGE models

A general equilibrium model becomes dynamic when we incorporate time.

Specifically, conditions of the economy in one moment are determined in

part by the past and will influence the future in some way.

A dynamic general equilibrium (DGE) model incorporates this time ele-

ment using either a continuous or discrete formulation of time. Continuous

time modeling is widely used in the economic growth literature, while the

literature on economic fluctuations almost always uses a discrete time setup.

Each setup has its advantages. Continuous time modeling allows for the use

of tools from the analysis of differential equations to solve our models. These

tools are well-understood and widely used in many contexts. Discrete-time

modeling requires the use of difference equations which are very similar, but

are less widely used. Discrete-time modeling is very convenient when the goal

is to numerically solve and/or simulate a model on a computer. Ultimately,

computers must discretize any problem, so it is often very useful to have a

model that is already described in these terms. These notes present models

using a discrete-time setup precisely because these models are intended to

be solved and simulated on computers.

Dynamic stochastic general equilibrium (DSGE) models are a special class

of DGE models. DSGE models incorporate at least one stochastic variable

that changes over time. Often this is a shock to productivity, but many large-

scale DSGE models also incorporate a large number of other types of shocks.

Since the shocks have a random component, they are modeled as stochastic

processes, which are often referred to as “laws of motion.” Often these laws

of motion are simple stochastic processes like an AR(1) or a random walk.
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Strictly speaking the “shocks” are the purely random innovations to the

stochahstic process – the εz in (2.16) below. However, we also often use the

term “shock” to refer to the variable upon which these innovations impact –

the z in the same equation.

2 A General DSGE Model

A typical DSGE model specifies a household’s problem, a firm’s problem,

market clearing conditions, and laws of motion for the stochastic shocks to the

system. This section presents a fairly general framework that characterizes

most DSGE models. In sections 3 and 4 below we work through a concrete

example for two relatively simple DSGE models.

2.1 Household’s Problem

There is a unit measure of households, each assumed to live forever and

to maximize expected lifetime utility subject to a series of period-by-period

budget constraints.

max
{xit,kt+1}∞t=0

∞∑
t=0

βtEt{u({xit}Ii=1)}

s.t.
I∑
i=1

pitxit + (1 + rt − δ)kt − kt+1 = 0 ∀t (2.1)

where the xit is the net demand for good i by the household (consumption

being a positive number) at price pit in period t, kt is savings in the form

of capital goods from period t− 1 that pays interest rt in period t, u(.) is a
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within-period utility function, β is a number between zero and one that dis-

counts future utility, and δ is the rate of capital depreciation. The prices, pit,

and capital rental rate, rt, are potentially stochastic, making utility stochas-

tic as indicated by the expectations operator, Et, in (2.1).

One way to formally incorporate this uncertainty would be to consider all

possible cases for the realization of these prices. If the number of cases was

countable, for example, we could index each possible realization or “state of

nature” with an s subscript and rewrite the problem as follows.

max
{xist,ks,t+1}∞t=0

∞∑
t=0

βt
∑
s

πstu({xit}Ii=1)

s.t.
I∑
i=1

pistxist + (1 + rst − δ)kst − ks,t+1 = 0 ∀s, t (2.2)

where πst is the probability of state of nature s occurring in time period t.

This formulation quickly becomes very complicated as, in general, we

need to define the state of nature as the history of stochastic shocks and not

just the current values for a set of stochastic variables. As we have written

the problem above, the household solves the utility maximization problem

for all eternity over all states of nature, just once at the beginning of the

economy. Once these consumption decisions are made, the household simply

follows this preset contingency plan each period depending on which state of

nature is realized.

A more promising approach is to imagine optimization as occurring se-

quentially. This approach is an application of dynamic programming. We

need to assume that the household’s problem meets certain regularity con-
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ditions before we can jump from (2.2) to dynamic programming. These

conditions amount to assuming that the household solves the same kind of

problem each period. For infinitely-lived agents this will be true. It would

not be true for agents with finite lifetimes as we have in overlapping gener-

ations models, however, and the dynamic programming tools we use below

would not be applicable.

A dynamic program is expressed by a Bellman equation:

V (kt; θt) = max
xit,kt+1

u({xit}) + βEt{V (kt+1, θt+1)}

s.t.
I∑
i=1

pitxit + (1 + rt − δ)kt − kt+1 = 0 (2.3)

V (., .) is referred to as the value function. In our context this corresponds to

the expected value of all future lifetime utility at period t. θt is a vector of

exogenously determined variables that may follow some stochastic process.

There are many ways to solve a dynamic programming problem. We will

discuss this in much greater detail later.

One set of conditions that should be obvious are the first-order conditions

for the maximization problem inside the Bellman equation. λt below is the

Lagrange multiplier for the period t budget constraint.

uxi({xit}Ii=1) + λtpit = 0 ∀i (2.4)

− λt + βEt{Vk(kt+1, θt+1)} = 0 (2.5)

The condition on each λt recovers the budget constraint.

6



There is also an envelope condition from the envelope theorem. The

envelope theorem states that if f(x, p) attains its maximum with respect to

x, f ∗(p) = maxx f(x, p), at x∗(p), then d f∗(p)
dp

= ∂f(x,p)
∂p

∣∣∣
x=x∗(p)

. In our case

this condition this implies:

Vk(kt; θt) = λt(1 + rt − δ) (2.6)

Combining (2.5) and (2.6) gives us what is known as an Euler equation.

λt = βEt{λt+1(1 + rt+1 − δ)} (2.7)

Substituting in (2.4) for λt puts this in a more common form expressed

using marginal utilities over time.

uxi({xit}Ii=1)

pit
= βEt

{
uxi({xi,t+1}Ii=1)

pi,t+1

(1 + rt+1 − δ)
}
∀i (2.8)

2.2 Firm’s Problem

A unit measure of firms arise spontaneously each period. Each firm rents

capital and buys other factors from households. Free entry and competitive

markets drive their profits to zero. The firm’s problem is not dynamic as the

firm exists only for one period. Shocks to the production function occur each

period.

max
Kt,Xit

Πt =
I∑
i=1

PitXit −RtKt s.t. F ({Xit}, Kt, zt) = 0
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where Pit is the price of good i in period t faced by the firm, F (.) is a

multivariate production function over the Xit’s with outputs being positive

and inputs being negative, Kt is the capital hired, Rt is the rental rate paid

for capital, and zt is an aggregate technology shock that is common to all

firms. The Lagrange multiplier for the production constraint is denoted Λt.

Maximization yields the following first-order conditions:

Pit + ΛtFXi({Xit}Ii=1, Kt, zt) = 0 ∀i (2.9)

−Rt + ΛtFK({Xit}Ii=1, Kt, zt) = 0 (2.10)

F ({Xit}Ii=1, Kt, zt) = 0 (2.11)

2.3 Adding-Up and Market Clearing

Market clearing conditions for period t are given by (2.12) and (2.13).

xit = Xit ∀i (2.12)

kt = Kt (2.13)

We also must impose equivalences between the prices faced by households

and those faced by firms to prevent infinite arbitrage opportunities.

pit = Pit ∀i (2.14)

rt = Rt (2.15)
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2.4 Exogenous Laws of Motion

Finally, we need to specify a stochastic process for the technology shocks:

zt = (1− ρz)z̄ + ρzzt−1 + εzt ; εzt ∼ i.i.d.(0, σ2
z) (2.16)

2.5 The Equilibrium

Recall that a competitive general equilibrium is defined by the conditions

that 1) the households are maximizing utility, 2) the firms are maximizing

profits, and 3) all markets clear (note there is no government in this model).

Hence, in this general model the competitive general equilibrium is given by

(2.3) and (2.8) – (2.16). The variables in the system are: {xit, pit, Xit, Pit}Ii=1,

kt, Kt, rt, Rt, Λt and zt.

Note the system can be simplified considerably by imposing (2.12) – (2.15)

on (2.9) – (2.11) to eliminate the variables denoted with capital letters. Also,

(2.10) can be used to eliminate Λt. This leaves us with a system of 2I + 3

equations in 2I + 3 variables.

It is often helpful to group the variables into categories. First we can

list variables that are exogenous to the model. We will use the notation

from Uhlig (1999) and call these Zt. In this case, it consists only of zt.

All other variables are endogenous to the model. There is a generally non-

unique set of these variables that collectively with Zt define the state of the

economy. This set of endogenous state variables are denoted Xt. In our case

a straightforward choice is to use kt. Looking carefully at the equations of

our model, we find that knowing kt−1 along with zt gives us everything we

need to solve for all the other variables in the current period, including kt.
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The set of endogenous non-state variables (also called “jump” variables) is

denoted Yt. To summarize we have:

Xt = {kt−1}

Yt =
{
{xit, pit}Ii=1, rt

}
Zt = {zt}

(2.17)

Our goal is to find a policy function, Φ, that maps the values of the

current state into the values for the endogenous state variables next period.

Xt+1 = Φ(Xt, Zt) (2.18)

Before we discuss ways to do this, let’s first look a less general model.

3 Our Baseline Model

In this section we will consider a variant of the model in Hansen (1985). The

model is a special case of the general one presented in the previous section

with the exception of the addition of a government budget constraint.

3.1 Household’s Problem

Households in this model hold capital (kt) and an endowment of labor which

is normalized by a choice of units to one. They earn a wage rate (wt) payable

on the portion of this labor endowment they choose to supply to the mar-

ket, and generate utility with the remaining labor, which we can think of as
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leisure. They also earn a rental rate (rt) on their capital, but lose a frac-

tion (δ) to depreciation. There is also a government in our version of the

model, which is missing from Hansen’s specification. The government taxes

household income at a constant marginal rate (τ) and refunds the proceeds

lump-sum to the households in the form of a transfer (Tt). From this net

income, households choose a consumption amount (ct) and an amount of

capital to carry over to the next period (kt+1).

The dynamic program for the households is

V (kt; θt) = max
`t,kt+1

u(ct, `t) + βEt{V (kt+1, θt+1)} (3.1)

s.t. (1− τ) [wt`t + (rt − δ)kt] + kt + Tt = ct + kt+1 (3.2)

We can dispense with the Lagrangian if we rewrite (3.2) as

ct = (1− τ) [wt`t + (rt − δ)kt] + kt + Tt − kt+1 (3.3)

and substitute it into the utility function of (3.1).

The first order conditons from the problem are:

u`(ct, `t) + uc(ct, `t)wt(1− τ) = 0 (3.4)

− uc(ct, `t) + βEt{Vk(kt+1, θt+1)} = 0 (3.5)

The envelope condition is :

Vk(kt; θt) = uc(ct, `t)[(rt − δ)(1− τ) + 1] (3.6)
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Combining (3.5) and (3.6) and rearranging terms gives us the intertem-

poral Euler equation.

uc(ct, `t) = βEt {uc(ct+1, `t+1)[(rt+1 − δ)(1− τ) + 1]} (3.7)

Rewriting (3.4) gives the a consumption-leisure Euler equation.

− u`(ct, `t) = uc(ct, `t)wt(1− τ) (3.8)

Note that work generates disutility via lost leisure, so the left-hand side is

the utility from an additional unit of leisure.

3.2 Firm’s Problem

As in section 2.2, a unit measure of firms arises spontaneously each period.

Each firm rents capital and labor services from households. The objective is

to maximize profits as shown.

max
Kt,Lt

Πt = f(Kt, Lt, zt)−WtLt −RtKt

where Kt and Lt are capital and labor hired, Rt and Wt are the factor prices,

and f(.) is the production fuction.

It yields the following first-order conditions:

Rt = fK(Kt, Lt, zt) (3.9)

Wt = fL(Kt, Lt, zt) (3.10)
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3.3 Government

The government collects distortionary taxes and refunds these to the house-

holds lump-sum:

τ [wt`t + (rt − δ)kt] = Tt (3.11)

3.4 Adding-Up and Market Clearing

Market clearing is:

`t = Lt (3.12)

kt = Kt (3.13)

Price equivalences are:

wt = Wt (3.14)

rt = Rt (3.15)

3.5 Exogenous Laws of Motion

The stochastic process for the technology is the same as in section 2.4.

zt = (1− ρz)z̄ + ρzzt−1 + εzt ; εzt ∼ i.i.d.(0, σ2
z) (3.16)

3.6 The Equilibrium

The dynamic equilibrium for the model is defined by (3.3) and (3.7) – (3.16),

a system of eleven equations in eleven unknowns. We can simplify this,

however, by using (3.14) and (3.15) as definitions to eliminate the variables

Wt and Rt. Similarly, (3.12) and (3.13) eliminate Lt and Kt. This leaves
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us with seven equations in seven unknowns, {ct, kt, `t, wt, rt, Tt & zt}. The

equations are:

ct = (1− τ) [wt`t + (rt − δ)kt] + kt + Tt − kt+1 (3.17)

uc(ct, `t) = βEt {uc(ct+1, `t+1)[(rt+1 − δ)(1− τ) + 1]} (3.18)

− u`(ct, `t) = uc(ct, `t)wt(1− τ) (3.19)

rt = fK(kt, `t, zt) (3.20)

wt = fL(kt, `t, zt) (3.21)

τ [wt`t + (rt − δ)kt] = Tt (3.22)

zt = (1− ρz)z̄ + ρzzt−1 + εzt ; εzt ∼ i.i.d.(0, σ2
z) (3.23)

The state of the economy is defined by zt and kt−1. All other variables

are jump variables. This gives us the following classifications:

Xt = {kt−1}

Yt = {ct, `t, wt, rt, Tt}

Zt = {zt}

(3.24)

Our goal is the policy function:

Xt+1 = Φ(Xt, Zt) (3.25)

14



3.7 The Steady State

Often, we need to find the steady state of the model before we can find the

policy function. In a model with no stochastic shocks the steady state is easy

to define. It is the state (or, more precisely, the value of the state variables)

toward which the economy tends in the long run.

3.7.1 The Solow Model

A familiar example is the simple Solow growth model. In this model house-

holds save a constant portion of their income, savings and investment are

equal and capital accumulates with depreciation.

St = sYt

Yt = Kα
t L

1−α
t

Lt = L̄ = 1

St = It

It = Kt+1 − (1− δ)Kt

Iterative subsitution yields the following policy function:

Kt+1 = (1− δ)Kt + sKα
t (3.26)

Figure 1 plots this policy function.

Suppose we started off the economy with a capital stock of K0. The

policy function, Kt+1 = Φ(Kt) gives a value of K1 for next period. Then,
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Figure 1: Policy Function and Steady State for
the Solow Model
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next period, the policy function gives K2, and so forth. In the long run the

capital stock will converge to Kss, the steady state value.

Since there are no stochastic shocks in this model, the state is described

by a single variable, Kt. The dynamics of this model are such that the

capital stock converges over time to its steady state value and then stays

there forever.

If we allow for stochastic shocks, there is no steady state, at least not

in the same sense. Suppose we have a different production function for the

Solow model that allowed for a stochastic shock to productivity.

Yt = Kα
t (Lte

zt)1−α
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Further suppose that the shock takes on one of two values randomly.

zt =

z1 with probability π

z2 with probability 1− π

The policy function becomes

Kt+1 = (1− δ)Kt + sKα
t e

(1−α)zt (3.27)

Figure 2 plots this. Because there are two policy functions and the econ-

Figure 2: Policy Function and Steady State for
the Solow Model	
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omy switches randomly between these two, there is no steady state in the

sense of a constant long-run value. However, in the long run, the state of
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economy does settle down to a constant distribution for the capital stock.

This distribution is referred to as the “ergodic” distribution and the econ-

omy is said to be in a “stationary” state.

Often we talk about the “steady state” of a stochastic model. When

we do, we are referring to a counterfactual state that economy will not ever

reach or maintain. This steady state is defined as the value for the state

variables toward which the economy would trend, if the stochastic shock

were permanently at its steady state value. Another way to think of this is

that it is the steady state for a non-stochastic version of the model, where

the innovations to the stochastic shocks (the εz’s) are always zero.

To solve for the steady state we set all stochastic shocks to their long run

value and do the same for the endogenous state variables.

In the stochastic Solow model we get:

K̄ = (1− δ)K̄ + sK̄αe(1−α)z̄; z̄ = πz1 + (1− π)z2 (3.28)

The solution for K̄ is:

K̄ =

(
se(1−α)z̄

δ

) 1
1−α

(3.29)

3.7.2 Steady State of the Baseline Model

To find the steady state in our DSGE model we need to proceed similarly

and replace the time-period-specific values of{ct, kt, `t, wt, rt, τt&zt} in (3.17)

– (3.23) with their steady state values as below:

c̄ = (1− τ)
[
w̄ ¯̀+ (r̄ − δ)k̄

]
+ T̄ (3.30)
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uc(c̄, ¯̀) = βEt
{
uc(c̄, ¯̀)[(r̄ − δ)(1− τ) + 1]

}
(3.31)

− u`(c̄, ¯̀) = uc(c̄, ¯̀)w̄(1− τ) (3.32)

r̄ = fK(k̄, ¯̀, z̄) (3.33)

w̄ = fL(k̄, ¯̀, z̄) (3.34)

τ
[
w̄ ¯̀+ (r̄ − δ)k̄

]
= T̄ (3.35)

(3.30) – (3.35) implicitly define a steady state via a system of six equations

in six unknowns, the unknowns being k̄, c̄, w̄, r̄, ¯̀ and T̄ (3.30) and (3.35) can

be used as definitions, reducing the system to four equations in k̄, w̄, r̄ and ¯̀

.

With this system we could perform comparative statics on the steady

state by totally differentiating the remaining four equations: (3.31), (3.32),

(3.33) and (3.34), using the chain rule on equations (3.30) and (3.35) as

needed. Exercise 6 requires such a task.

To proceed further we need functional forms for u(c, `) and f(k, `, z). If

we choose appropriate functional forms it will be possible to solve explicitly

for the steady state value of k as a function of the parameters. Taking com-

parative statics is relatively easy for k̄. Once this is known we can substitute

it back into equations (3.30) – (3.35) appropriately to get the comparative

statics for all the other steady state variables. This is the assignment for

Exercise 9.
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3.8 Additional Issues

Finally note that we have nowhere in our DSGE model defined other common

variables such as investment and GDP. We can easily do so, however, by

adding additional definitional equations. For example, GDP would be given

by:

yt = f(kt, `t, zt) (3.36)

Investment is given by:

it = kt+1 − (1− δ)kt (3.37)

In addition, while rt is the rental rate on capital, it is not the same as

the real interest rate that would be offered on financial assets. The closest

analog is the user cost of capital, which is defined as:

ut = rt − δ (3.38)

Other variables of interest can be defined in similar ways. Once steady

state values are found for the state variables (in our case k̄ and z̄) we can

find the steady state values of all other variables in the model.

Also note that the state can be expanded to include variables that are

not necessary to define the state. For example, if we cannot rewrite one of

the equations so that `t is isolated as a definition, we would still have an

equation or set of equations that implicitly define its value. In this case if

often turns out to be useful to simply include `t in the set of endogenous

state variables even though it is not strictly a state variable. Indeed we will
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see that in some cases it is best to treat all the variables in the model as if

they were state variables (this is the case with the DSGE modeling program,

Dynare, for example). This means that it is perfectly legitimate to rewrite

(3.24) as (3.39) or (3.40).

Xt = {kt−1, `t}

Yt = {ct, wt, rt, Tt}

Zt = {zt}

(3.39)

Xt = {kt−1, `t, ct, wt, rt, Tt}

Yt = ∅

Zt = {zt}

(3.40)

4 Brock and Mirman’s Model

In this section we build a variant of the model in Brock and Mirman (1972).

This model is absurdly simple, but is valuable for two reasons. First, the

closed-form solution for the policy function is known. And second, it is an

easy model to use when illustrating our numerical techiniques later in the

course.

Households solve the followng dynamic program.

V (Kt, zt) = max
Kt+1

ln(eztKα
t −Kt+1) + βEt{V (Kt+1, zt+1)} (4.1)
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The associated Euler equation is:

1

eztKα
t −Kt+1

= βEt

{
ezt+1Kt+1

α−1

ezt+1Kt+1
α −Kt+2

}
(4.2)

The law of motion for z is:

zt+1 = ρzt + σεt (4.3)

And the shocks, ε, are distributed as:

εt =


√

3
2

with probability 1
3

0 with probability 1
3

−
√

3
2

with probability 1
3

(4.4)

You be we asked in a homework assignment to verify that the policy function

takes the following form:

Kt+1 = AeztKα
t (4.5)

You will need to find the value of A as a function of the model’s parameters.

The steady state value of K is defined by using (4.5) with Kt = Kt+1 and

zt = 0.

K̄ = A
1

1−α (4.6)

The parameters of the model are, α, β, ρ and σ. When values are needed

for numerical calculations use the following default values unless otherwise
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indicated:

α = .35

β = .98

ρ = .95

σ = .02

5 Introduction to Solution Methods

Except for a few known special cases, it is generally impossible to solve al-

gebraically for the policy function in a DSGE model. One case where it is

possible is given in Homework 1. This means we must resort to numerical

techniques to solve and simulate DSGE models. The set of solution tech-

niques that have been used in the past includes:

• discrete grid approximations

• spline function approximations

• linear-quadratic approximations objective functions and contstraints

• log-linearzation of the characterizing equations

• higher-order approximation of the characterizing equations

We will discuss all of these, but will go into special detail with the last

two methods
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5.1 Grids and Splines

Discrete grid methods are very computationally intensive, but can be ideal

for highly nonlinear policy functions. In our DSGE model the policy function

is kt+1 = Φ(kt, zt). To approximate this with a discrete grid, we would set

up a support for k and z with a finite number of elements (the grid). To

find the policy function, for every combination of the values for kt and zt

in the grid, we would find the value of kt+1 in the finite support of k that

comes cloeset to satisfying the general equilibrium conditions. If there are N

elements in the support of k and M elements in the support of z, then the

policy function is an N ×M array with an index number in each element of

the array indicating which of the N elements in the support of k is optimal.

Figure 3 illustrates this discretized policy function for a particular value of

z, z0.

As the grid becomes finer with more elements in the supports, the ap-

proximation becomes better.

A spline approximation allows us to fill in the values between the discrete

points on the support. Simple splines could be linear, or they could be curved

to approximate smooth functions better using a quadratic or cubic function

over the interval between the points.

There is a great deal of literature on the optimal grid structure and the

optimal splines for approximation in a variety of settings. Engineering appli-

cations often use these tools. In economics they are less widely used, most

likely because the behavior of many DSGE models is quite smooth making

other approximation techniques computationally more efficient.
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Figure 3: Policy Function and Steady State for
the Solow Model
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5.2 Blanchard-Kahn and Linear-Quadratic Methods

One of the first approximation methods to be used with DSGE models was

introduced by Blanchard and Kahn (1980) who adapted numerical techniques

from the engineering literature. An excellent discussion of this is given in

McCandless (2008, pp. 129-132).

Another early method employed by Kydland and Prescott (1982) is to op-

timize an objective function that is approximated by a quadratic, subject to

linear constraints. This is usually the household’s utility function maximized

subject to a budget constraint. Intutively, since the objective is quadratic,

the Euler equations derived will be linear yielding highly tractable equations
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from which to derive a solution. In terms of our baseline DSGE model we

take a quadratic approximation of the utility function in (3.1) and then use

the first-order condtions to derive specific versions of equations (3.7) and

(3.8). These will be simple linear equations and the system can be solved

following the steps outlined in McCandless (2008, ch. 7).

5.3 Log-Linearization Methods

The best sources here are Uhlig (1999) and Christiano (2002). Log-linearizartion

will be covered in excruciating detail in section 6. Here we will simply note

the intuition. Rather than approximate the objective function as above,

log-linearization techniques involve taking approximations of the final char-

acterizing equations. In terms of our DSGE model from 3 we would take logs

of equations (3.17) – (3.11) and then take linear approximations of these, al-

most always by taking a first-order Taylor-series expansion of the equations.

If we assume the policy function is also log-linear then some straightforward

algebra yields its coefficients. Numerically solving for these coefficients can

be challenging, particularly if the state space of the model is large.

The Taylor-series expansion requires a point about which the functions

are approximated. In almost all cases this is the steady state of the model.

Most models are stable and well-behaved and the stationary state is one

where the state fluctuates around in a neighborhood near the zero-innovation

steady state. Evans and Phillips (2012) show how linearizing about a different

point may improve the approximation for models that are unstable or which

are for other reasons rarely in the neighborhood of the steady state.
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5.4 Perturbation Methods

Log-linearization methods will be very good approximations in the neigh-

borhood of the expansion point. One way to improve the accuracy of the

approximation is to incorporate higher-order terms from the Taylor-series

expansion of the characterizing equations. Higher-order terms means finding

greater numbers of coefficients. The classic citation for the numerical method

of finding higher-order coefficients is Judd (1992) and the method is referred

to a the ”pertubation method.”

Consider our intertemporal Euler equation from (3.7), reproduced below.

uc(ct, `t) = βEt {uc(ct+1, `t+1)[(rt+1 − δ)(1− τ) + 1]} (5.1)

Note that the right-hand side of the equation involves taking an expectation.

If we linearize or log-linearize this equation, the expectations operater passes

through and we end up with linear equations in the expected values of the

variables. This generates a phenomenon known as ”certainty equivalence”

which will not hold generally. The right-hand side takes the expectation of

the marginal utility of consumption times a rate of return on capital. By

log-linearizing this becomes equal to the marginal utility of the expected

consumption times the expected return on capital. These are only approx-

imately the same. And the difference can be important if we are dealing

with things like risk aversion and risk premia. For this reason, higher-order

approximations are a must when dealing with models where riskiness is a

central feature of the model.
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5.5 Sparse Grid and GSSA

More recently Krueger and Kubler (2004) and Judd, Maliar, and Maliar

(2011) have used computational techniques that give very good approxima-

tions to policy functions. These techniques do not require the imposition of

certainty equivalence and are suitable for a large variety of dynamic general

equilibrium models.

6 Log-Linear Approximations

Log-linear approximations are a very common way of solving and simulating

DSGE models. Recently, due to the easy availability of the software package,

Dynare, higher-order approximations have begun to replace these methods.

The methods are nonetheless useful as a step to understanding higher-order

approximations. In many cases the computational simplicity of these ap-

proximations may be worth the loss of accuracy relative to the higher-order

methods.

6.1 A General Method

Let us first present log-linearization in a very general way. We follow the

notation in Uhlig (1999) in the discussion that follows. Once we understand

this in general, we will return to our baseline DSGE model and use it as an

example.

Let us group our model’s variables into two groups as above. Zt is a

vector of exogenous state variables. Xt will be a vector of endogenous state

variables. Recall we can include non-state variables in this vector without
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loss of generality as long as there exists a subset of the elements in Xt and

Zt that is sufficient to describe the state of the economy. Let nX be the

cardinality of Xt and nZ be the cardinality of Zt.

We will assume that Zt follows first-order vector autoregression for its

law of motion.

Zt = (I −N)Z̄ +NZt−1 + εt (6.1)

N is a nZ × nZ square matrix.

We will take the characterizing equations for the model and write them

as a vector of functions in the following form:

Et{Γ(Xt+1, Xt, Xt−1, Zt+1, Zt)} = 1 (6.2)

Xt+1, Xt and Xt−1 are nX × 1 vectors. Zt+1 and Zt are nZ × 1 vectors and Γ

outputs a nX × 1 vector.

We next take the natural logarithm of all these functions and apply a

Taylor-series expansion to them, expanding about the steady state values

of X and Z. We keep only the constants and linear terms and discard all

higher-order terms in the expansion. Because we have discarded these terms

the equations we have derived are only approximations.

Et

{
ln Γ(X̄, X̄, X̄, Z̄, Z̄) +

∑
i∈I

Γi(X̄, X̄, X̄, Z̄, Z̄)

Γ(X̄, X̄, X̄, Z̄, Z̄)
(i− ī)

}
= 0 (6.3)

where I = {Xt+1, Xt, Xt−1, Zt+1, Zt} and Γi denotes the matrix of derivatives

of the vector of functions Γ with respect to element i in I.
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Since the steady state values of X and Z satisfy (6.2), the first term in

(6.3) is zero. We can also divide each term in the sum by the vector of

variables for which the derivative is taken to get:

Et

{∑
i∈I

īΓi(X̄, X̄, X̄, Z̄, Z̄)

Γ(X̄, X̄, X̄, Z̄, Z̄)

i− ī
ī

}
= 0 (6.4)

We can write this in a more compact form using Uhlig’s notation as:

Et

{
FX̃t+1 +GX̃t +HX̃t−1 + LZ̃t+1 +MZ̃t

}
= 0 (6.5)

where a tilde over a variable indicates its percent deviation from its steady

state value for X, i.e. X̃t ≡ Xt−X̄
X̄

, and an absolute deviation from the steady

state value for Z, i.e. Z̃t ≡ Zt−Z̄. The coefficients are matrices of derivatives

evaluated at the steady state values. For example, F ≡ X̄ΓXt+1
(X̄,X̄,X̄,Z̄,Z̄)

Γ(X̄,X̄,X̄,Z̄,Z̄)
,

and L ≡ ΓZt+1
(X̄,X̄,X̄,Z̄,Z̄)

Γ(X̄,X̄,X̄,Z̄,Z̄)
. F,G and H are nX × nX square matrices, while L

and M are nX × nZ .

With this notation in place, we can also rewrite (6.1) as:

Z̃t = NZ̃t−1 + εt (6.6)

We now hypothesize that the transition function, Xt = Φ(Xt−1, Zt) can

also be log-linearly approximated by

X̃t = PX̃t−1 +QZ̃t (6.7)

where P is a nX × nX square matrix and Q is nX × nZ .
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We know the values of F,G,H,L and M since these are functions of the

model parameters and steady state values (which are also functions of the

parameters). N can be considered as part of the parameter set. We do not

know the values of P and Q, however.

We can solve for them by iteratively substituting appropriate versions of

(6.7) and (6.6) into (6.5).

After some tedious matrix algebra (see Homework 10) this reduces to:

[(FP +G)P +H]X̃t−1 + [(FQ+ L)N + (FP +G)Q+M ]Z̃t = 0 (6.8)

(6.8) is true for all values of Xt−1 and Zt. This means that the coefficients

on these terms in the equation must be zero. In turn, this gives us two

equations that implicitly define P and Q.

FP 2 +GP +H = 0 (6.9)

FQN + (FP +G)Q+ (LN +M) = 0 (6.10)

Condition (6.9) requires solving a matrix quadratic in P . Once P is

known, condition (6.10) can be used to solve for a value of Q.

6.2 Analytical Log-Linearization

Before proceeding to our particular model, let’s first discuss how one log-

linearizes characteristic equations analytically.
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Suppose we have a characterizing equation like that below.

Et

{
xbt
xdt−1

}
= 1

We can substitute in the following identities: xt = x̄(1 + x̃t) ∼= x̄ex̃t and

xt−1 = x̄ex̃t−1 to get:

Et

{
x̄ebx̃t

x̄edx̃t−1

}
= Et

{
ebx̃t−dx̃t−1

}
= 1

Noting that while xt−1 is known and we need not take expectations, but that

this is not so for xt and taking natural logs:

0 = lnEt
{
ebx̃t−dx̃t−1

}
∼= lnEt {1 + bx̃t − dx̃t−1}

= ln(1 + bEt{x̃t} − dx̃t−1)

∼= bEt{x̃t} − dx̃t−1

Suppose that a different characterizing equation is

Et
{
xbt + fxdt−1

}
= 1
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Proceeding as before:

0 = lnEt
{
x̄ebx̃t + fx̄edx̃t−1

}
= lnEt

{
x̄(ebx̃t + fedx̃t−1)

}
∼= lnEt {x̄[1 + bx̃t + f(1 + dx̃t−1)]}

= ln x̄+ ln[1 + f + bEt{x̃t}+ fdx̃t−1)]

We can proceed similarly with almost any characterizing equation.

6.3 Numerical Log-Linearization

Another way to proceed is to use numerical methods to log-linearize. Since

the coefficients of (6.5) are functions of derivatives evaluated at the steady

state. We can find these numerically as well as analytically.

The procedure for numerical deriviatives is as follows:

• Evalate Γ at the steady state values. Denote this column vector Γ̄.

• One-by-one disturb each element in [Xt Zt] by a small amount, ε, and

evaluate Γ again at each of these values. This will give a nX×1 column

vector for each of the 3nX + 2nZ values. Denote each of these vectors

Γj, where j indexes the elements of Θ ≡ [Xt+1 Xt Xt−1 Zt+1 Zt].

• Find the derivative of for the log of Γij (i indexing the row) by using

Dij =
Θj(Γij−Γ̄i)

εΓ̄i
for the Xs and Dij =

Γij−Γ̄i
εΓ̄i

for the Zs. This generates

a large matrix of derivatives, D, that is nX × (3nX + 2nZ). Our coef-

ficients come from subsets of this matrix. For example, F is all rows

and columns 1 through nX of D.
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6.4 Linearizing Brock and Mirman’s Model

Let us first solve for the linearized approximation, not the log-linearized one.

Recall the Euler equation from the Brock and Mirman model.

1

eztKα
t −Kt+1

= βEt

{
ezt+1Kt+1

α−1

ezt+1Kt+1
α −Kt+2

}

We rewrite this equation and put it in the form of (6.2).

Et
{
β[ezt+1Kt+1

α−1(eztKα
t −Kt+1)− ezt+1Kt+1

α +Kt+2]
}

= 0 (6.11)

By differentiating (6.2) with respect to Kt+2, Kt+1, Kt, zt+1 and zt we

can recover the Uhlig matrices:

F =β

G =βezt+1Kα−1
t+1

[
K−1
t+1(α− 1)(eztKα

t −Kt+1)− 1− α
]

H =βezt+1Kα−1
t+1 e

ztKα−1
t α

L =β
[
ezt+1Kα−1

t+1 (eztKα
t −Kt+1)− (ezt+1Kα

t+1 −Kt+2)
]

M =βezt+1Kα−1
t+1 e

ztKα−1
t
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Evaluating these at their steady state values gives:

F =β

G =βK̄α−1
[
K̄−1(α− 1)(K̄α − K̄)− 1− α

]
H =βK̄2(α−1)α

L =β
[
K̄α−1(K̄α − K̄)− (K̄α − K̄)

]
M =βK̄2(α−1)

To evaluate (6.15) recall K̄ = A
1

1−α . We can then use equations (6.9) and

(6.10) to derive the scalar values P and Q.

P =
−G±

√
G2 − 4FH

2F
(6.12)

Q = − LN +M

FN + FP +G
(6.13)

In this case, since we have linearized (not log-linearized) the policy func-

tion is:

Kt+1 = K̄ + P (Kt − K̄) +Qzt (6.14)

6.5 Log-Linearizing Brock and Mirman’s Model

To log-linearize we must replace Kt with K̄eK̃t . We do this for (6.11) and

obtain:

Et

{
β[K̄α−1ezt+1+(α−1)K̃t+1(K̄αezt+αK̃t − K̄eK̃t+1)− K̄αezt+1+αK̃t+1 + K̄eK̃t+2 ]

}
= 0
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We rewrtite this as:

Et



K̄−1ezt+1+(α−1)K̃t+1+zt+αK̃t

−K̄αezt+1+(α−1)K̃t+1+K̃t+1

−K̄αezt+1+αK̃t+1

+K̄eK̃t+2


= 0

We rewrtite this further as:

Et



K̄−1(1 + zt+1 + (α− 1)K̃t+1 + zt + αK̃t)

−K̄α(1 + zt+1 + (α− 1)K̃t+1 + K̃t+1)

−K̄α(1 + zt+1 + αK̃t+1)

+K̄(1 + K̃t+2)


= 0

Note that the steady state version of (6.11) implies that K̄−1 − K̄α −

K̄α + K̄ = 0. This allows us to again rewrite as:

Et



K̄−1(zt+1 + (α− 1)K̃t+1 + zt + αK̃t)

−K̄α(zt+1 + (α− 1)K̃t+1 + K̃t+1)

−K̄α(zt+1 + αK̃t+1)

+K̄(K̃t+2)


= 0
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Regrouping terms:

Et



(K̄)K̃t+2

(K̄−1(α− 1)− 2K̄αα)K̃t+1

(K̄−1α)K̃t

(K̄−1 − 2K̄α)zt+1

(K̄−1)zt


= 0

This gives:

F =K̄

G =K̄−1(α− 1)− 2K̄αα

H =K̄−1α

L =K̄−1 − 2K̄α

M =K̄−1

6.6 Log-Linearizing Our Baseline Model

Recall the model defined by (3.17) – (3.23). Zt = {zt}, but we need to

determine what variables are in the vector Xt. We certainly want to include

kt−1, but what jump variables should we include?

As we mentioned in section 3.8, we could include all the jump variables.

However, let’s try to be a bit more conservative with the list. Any variables

that can be isolated as definitions will not be included as elements of Xt.

(3.17), (3.20), (3.21), and (3.11) give us four such definitions.
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rt = fK(kt, `t, zt)

wt = fL(kt, `t, zt)

Tt = τ [wt`t + (rt − δ)kt]

ct = (1− τ) [wt`t + (1 + rt − δ)kt] + Tt − kt+1

(6.15)

So let’s define Xt = {kt−1, `t}, even though `t is not strictly a state

variable.

If we use ln ct + a ln(1− `t) as the utility function. Then, uc(ct, `t) = c−1
t

and u`(ct, `t) = −(1 − `)−1
t . Our characterizing equations from (3.18) and

(3.19) become:

Et

{
β
ct
ct+1

(1 + rt+1 − δ)(1− τ)

}
= 1 (6.16)

ct
wt(1− τ)(1− `t)

= 1 (6.17)

The law of motion for Z is the same as (3.23).

zt = (1− ρz)z̄ + ρzzt−1 + εzt ; εzt ∼ i.i.d.(0, σ2
z) (6.18)

To implement the procedure from section 6.1 above we need transform

(6.18) and write it in terms of the deviations of zt from its steady state value:

z̃t = ρz z̃t−1 + εzt (6.19)

We next need to take the natural logs of (6.16) and (6.17) and then
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linearize them. We can do this analytically or numerically. Let’s do it ana-

lytically here.

First let’s choose a functional for for the production function. We will

use Yt ≡ eztkαt `
1−α
t .

Let’s log-linearize our definitions in (6.15) first (see the Appendix for

details).

r̃t = z̃t + (α− 1)k̃t + (1− α)˜̀
t (6.20)

Proceeding similarly with the other lines gives:

w̃t = z̃t + αk̃t − α ˜̀
t (6.21)

T̃t =
τw̄ ¯̀

T̄
w̃t +

τw̄ ¯̀

T̄
˜̀
t +

(1 + r̄ − δ)k̄
T̄

r̃t +
(1 + r̄ − δ)k̄

T̄
k̃t (6.22)

ct =
(1− τ)w̄ ¯̀

c̄
w̃t +

(1− τ)w̄ ¯̀

c̄
˜̀
t +

(1 + r̄ − δ)k̄
c̄

r̃t...

+
(1 + r̄ − δ)k̄

c̄
k̃t +

T̄

c̄
T̃t −

k̄

c̄
k̃t+1

(6.23)

Log-linearizing the characterizing equations in (6.16) and (6.17) gives:

c̃t − c̃t+1 + r̃t+1 = 0 (6.24)

c̃t − w̃t + ˜̀
t = 0 (6.25)
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Substituting (6.20) – (6.23) into (6.24) and (6.25) gives the elements of

the coefficients in (6.5) as functions of parameters and steady state values.

If we had chosen Xt = {kt−1, `t, rt, wt, Tt, ct} then (6.20) – (6.25) would

give us the coefficients.

6.7 Simulating Log-Linearized DSGE Modes

We begin our simulation at a set of starting values, [X0 Z1]. We need to

first convert these to deviations from the steady state. For values of X we

take the percent deviation, X̃0 = lnX0 − ln X̄. For values of Z we take the

absolute deviation, Z̃0 = Z0 − Z̄

Recall the law of motion for Zt is (6.6).

Z̃t = NZ̃t−1 + εt

We can use this to generate a history of Z̃s independent of the rest of the

economy, since the Z̃s are exogenous to the model. We do so by generating

a history of ε’s using a random number generator. We start with t = 2 and

iteratively apply (6.6) to generate the Z̃ time series.

Recall our log-linearized policy function is equation (6.7).

X̃t = PX̃t−1 +QZ̃t

We can use this to iteratively generate a history of X̃s starting with t = 1.

Once we have full histories for [X̃t Z̃t] we can convert these back to actual

levels by using Xt = X̄eX̃t and Zt = Z̃t + Z̄.
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A Appendix

The details of the algebra required to obtain (6.20) follow:

rt = eztkα−1
t `1−α

t

r̄er̃t = ez̄+z̃t(k̄ek̃t)(α−1)(̄`e
˜̀
t)(1−α)

r̄(1 + r̃t) = ez̄(1 + z̃t)k̄
α−1[1 + k̃t(α− 1)]¯̀1−α[1 + ˜̀

t(1− α)]

r̄ + r̄r̃t = ez̄k̄α−1 ¯̀1−α(1 + z̃t)[1 + k̃t(α− 1)][1 + ˜̀
t(1− α)]

r̄ + r̄r̃t = ez̄k̄α−1 ¯̀1−α[1 + z̃t + k̃t(α− 1) + ˜̀
t(1− α) + Ξ]; Ξ ∼= 0

r̄ + r̄r̃t = ez̄k̄α−1 ¯̀1−α + ez̄k̄ ¯̀[z̃t + k̃t(α− 1) + ˜̀
t(1− α)]

noting r̄ = ez̄k̄α−1 ¯̀1−α

r̄r̃t = r̄[z̃t + k̃t(α− 1) + ˜̀
t(1− α)]

r̃t = z̃t + (α− 1)k̃t + (1− α)˜̀
t (A.1)
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Exercises

Homework 1

For the Brock and Mirman model, find the value of A in the policy function.

Show that your value is correct.

For this case find an algebraic solution for the policy function, kt+1 =

Φ(kt, zt). Couple of good sources for hints are Stokey, Prescott, and Lucas

(1989, excercise 2.2, p. 12) and Sargent (1987, exercise 1.1, p. 47).

Homework 2

For the model in section 3 of the notes consider the following functional

forms:

u(ct, `t) = ln ct + a ln (1− `t)

F (Kt, Lt, zt) = eztKα
t L

1−α
t

Write out all the characterizing equations for the model using these functional

forms.

Can you use the same tricks as in homework 1 to solve for the policy

function in this case? Why or why not?
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Homework 3

For the model in section 3 of the notes consider the following functional

forms:

u(ct, `t) =
c1−γ
t − 1

1− γ
+ a ln (1− `t)

F (Kt, Lt, zt) = eztKα
t L

1−α
t

Write out all the characterizing equations for the model using these functional

forms.

Homework 4

For the model in section 3 of the notes consider the following functional

forms:

u(ct, `t) =
c1−γ
t − 1

1− γ
+ a

(1− `t)1−ξ − 1

1− ξ

F (Kt, Lt, zt) = ezt [αKη
t + (1− α)Lηt ]

1
η

Write out all the characterizing equations for the model using these functional

forms.
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Homework & Lab 5a

For the model in section 3 of the notes consider the following functional

forms:

u(ct) =
c1−γ
t − 1

1− γ

F (Kt, Lt, zt) = Kα
t (Lte

zt)1−α

Write out all the characterizing equations for the model using these functional

forms. Assume `t = 1.

Write out the steady state versions of these equations. Solve algebraically

for the steady state value of k as a function of the steady state value of z and

the parameters of the model. Numerically solve for the steady state values of

all variables using the following parameter values: γ = 2.5, β = .98, α = .40,

δ = .10, z̄ = 0 and τ = .05. Also solve for the steady state values of output

and investment. Compare these values with the ones implied by the algebraic

solution.

Homework & Lab 5b

For the model in section 3 of the notes consider the following functional

forms:

u(ct, `t) =
c1−γ
t − 1

1− γ
+ a

(1− `t)1−ξ − 1

1− ξ

F (Kt, Lt, zt) = Kα
t (Lte

zt)1−α
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Write out all the characterizing equations for the model using these functional

forms. Write out the steady state versions of these equations. Numerically

solve for the steady state values of all variables using the following parameter

values: γ = 2.5, ξ = 1.5, β = .98, α = .40, a = .5, δ = .10, z̄ = 0, and τ = .05.

Also solve for the steady state values of output and investment.

Homework 6

For the steady state in section 3.7 of the notes use total differentiation to

solve for the full set of comparative statics and sign them where possible.

Find ∂y
∂x

for y ∈ {k̄, w̄, r̄, ¯̀} and x ∈ {δ, τ, z̄}.

Assume fK > 0, fKK < 0, fL > 0, fLL < 0, uc > 0, ucc < 0, u` < 0 and

u`` > 0.

Note this problem gets very tedious. Solving via MAPLE would be a

wonderful shortcut and you are welcome to proceed that way. However, you

may also just shown how you could set the problem up using linear algebra

and show what steps need to be taken to get the comparative statics, but

not actually perform the algebra.

Lab 7a

For the Brock and Mirman model in section (4) set up a discrete grid for K

with 100 values ranging from .0001 to 5K̄. Also set up a discrete grid for z

with 100 values ranging from −5σ to +5σ. Set up a value function array, V

that stores the value for all 10,000 possible permuations of K and z. Also

set up a policy function array, H, that stores the optimal index value of K ′

for all all 10,000 possible permuations of K and z.
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To begin assume that all elements of V are zero and that all elements of

H point to the lowest possible value for K (.0001).

Loop over all possible values of K and z and for each combination find

1) the optimal value of K ′ from the 100 possible values. Store this value in

an updated policy function array, Hnew. Also find 2) the value implied by

this choice given the current value function. Store this in an updated value

function array, Vnew.

Once this is completed for all K and z check to see if V is approzimately

equal to Vnew. If so, output the value function and policy function arrays. If

not, replace V with Vnew and H with Hnew and repeat the search above.

When finished plot the three-dimensional surface plot for the policy func-

tion K ′ = H(K, z). Compare this with the closed form solution from the

notes.

Lab 7b

Repeat the above exercise using k ≡ lnK in place of K as the endogenous

state variable.

Lab 8a

For the Brock and Mirman model in section (4) use Uhlig’s notation to

analytically find the values of the following matrices: F,G,H,L,M & N

as functions of the parameters. Given these find the values of P&Q, also

as functions of the parameters. Imposing our calbrated parameter values,

plot the three-dimensional surface plot for the policy function K ′ = H(K, z).
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Compare this with the closed form solution fromthe notes and the solution

you found using the grid search method.

Lab 8b

Repeat the above exercise using k ≡ lnK in place of K as the endogenous

state variable.

Lab 9

For the baseline modle in section (3) numerically, find ∂y
∂x

for y ∈ {k̄, w̄, r̄, ¯̀}

and x ∈ {δ, τ, z̄} assuming u(ct, `t) =
c1−γt −1

1−γ +a (1−`t)1−ξ−1
1−ξ and F (Kt, Lt, zt) =

Kα
t (Lte

zt)1−α. Use the following parameter values: γ = 2.5, ξ = 1.5, β = .98,

α = .40, a = .5, δ = .10, z̄ = 0, and τ = .05.

Homework 10

Do the necessary tedious matrix algebra necessary to transform equation

(6.5) into equation (6.8).

Lab 11

Assume nX = nZ = 1. Show how to solve for the elements of P and Q. Write

a program in Python that will do this given F,G,H,L,M and N as inputs.

Now assume nX and nZ take on arbitrary values greater than one. Show

how to solve for the elements of P and Q. Write a program in Python that

will do this given F,G,H,L,M and N as inputs.
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The MATLAB programs for Uhlig (1999) are available online and may

be of some help structuring the Python code. The discussion in the paper

itself may also be a big help.

Homework & Lab 12

Suppose that instead of including the jump variables of our our model in the

vector Xt above, we separated them into a separate vector, Yt. In this case

we can linearize our system into the following equations:

0 = AX̃t +BX̃t−1 + CỸt +DZ̃t

0 = Et

{
FX̃t+1 +GX̃t +HX̃t−1 + JỸt+1 +KỸt + LZ̃t+1 +MZ̃t

}
Z̃t = NZ̃t−1 + εt

Assume that C is of full rank. By once again hypothesizing that the transition

functions for the model are log-linear, that is they are of the form:

X̃t = PX̃t−1 +QZ̃t

Ỹt = RX̃t−1 + SZ̃t

Derive algebraic solutions for P , Q, R, and S using techniques similar to

those in the notes. Modify the program you wrote in Homework 9 slightly to

accommodate separating jump variables from state variables. What advan-

tages might this approach have computationally? In setting up the matricies

describing the model?
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Lab 13a

Assume nX = nZ = 1. Write a Python program that will find the numerical

values for the derivative of the characterizing equation, taking the parameters

as given. Note that you will need to find the steady state value of X first.

Now assume nX and nZ take on arbitrary integer values greater than

one. Write a Python program that will find the numerical values for the

derivatives of the characterizing equations in this case.

Lab 13b

Repeat the second part of the excercise above, where nX and nZ take on arbi-

trary integer values greater than one. However now take numerical values for

the the derivatives of the natural logarthims of the characterizing equations.

Lab 14

For the log-linearized model in section 6.6 of the notes consider the following

fundamental functional forms:

u(ct, `t) =
c1−γ
t − 1

1− γ
+ a

(1− `t)1−γ − 1

1− γ

F (Kt, Lt, zt) = Kα
t (Lte

zt)1−α

Use the following paramter values: γ = 2.5, β = .98, α = .40, a = .5, δ = .10,

z̄ = 0, ρz = .9 and τ = .05.

Find the values of P and Q in this case if Xt = {kt−1, `t}.
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Lab 15

Use the law of motion and approximate policy function from homework 14

to generate 1000 artificial time series for an economy where each time series

is 250 periods long. Start each simulation off with a starting value for k

that is ten percent below the steady state value, and a value of z that is one

standard deviation below zero.

Use σ2
z = .004.

For each simulation save the time-series for GDP, consumption and in-

vestment. When all 1000 simulations have finished generate a graph for each

of these time-series showing the average value over the simulations for each

period, and also showing the five and ninety-five percent confidence bands

for each series each period.

In addition, calcuate the mean, standard deviation, autocorrelation and

correlation with output for each series over each simulation and report the

average values and standard deviations for these moments over the 1000

simulations.

Lab 16

Using the same setup as homework 14, generate impulse response functions

for GDP, consumption and investment with lags from zero to forty periods.
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