
BYU-MCL Boot Camp
Numerical Integration
Professor Richard W. Evans

1 Introduction

Integrals of the form
∫ b
a
g(x)dx arise often in economic models. One example is the

aggregating of consumption amounts of a continuum of differentiated goods ct(i),

Ct =

(∫ 1

0

α
1
ε
i ct(i)

ε−1
ε di

) ε
ε−1

(1)

where Ct is aggregate consumption, αi is a weight on the particular amount of con-
sumption of good i, ε is the constant elasticity of substitution between different goods
i, and the measure of goods is normalized to be between 0 and 1, without loss of gen-
erality.1 Another key example of an integral that often occurs in macroeconomics is
the expectations operator on the right-hand-side of the standard intertermporal Euler
equation,

u′(ct)
=βEzt+1|zt

[
(1 + rt+1 − δ)u′(ct+1)

]
⇒ u′(ct) = β

∫ b

a

(
1 + rt+1(zt+1)− δ

)
u′
(
ct+1(zt+1)

)
f(zt+1|zt)dzt+1

(2)

where a and b are the bounds of the support of zt+1 and f(zt+1|zt) is the pdf of zt+1

that could potentially be conditional on zt.
It is a rare convenience when these integrals can be evaluated analytically. How-

ever, it does not take much richness in functional form to render analytical solutions
impossible for many integrals in economic models. In these cases, the integral must
be computed numerically. The following discussion of numerical integration draws
from the great treatments of the subject in Heer and Maussner (2009, pp. 598-603),
Judd (1998, Ch. 7), and Adda and Cooper (2003, pp.55-60).

2 Newton-Cotes Quadrature

Newton-Cotes quadrature forumalas approximate the integral of a function
∫ b
a
g(x)dx

by evaluating the function at N nodes {x1, x2, ...xN} and weighting those nodes with
N weights {ω1, ω2, ...ωN}. The general form of Newton-Cotes quadrature forumulas
is ∫ b

a

g(x)dx ≈
N∑
n=1

ωng(xn) (3)

1The consumption aggregator in (1) is often called the Armington aggregator as it was first
proposed in Armington (1969). It is also known as a Dixit-Stiglitz aggregator after its use in Dixit
and Stiglitz (1977).

1



2.1 Midpoint rule (1 node)

The midpoint rule is the simplest Newton-Cotes formula and uses only one node or
evaluation of the function. The midpoint formula simply evaluates the function at
the midpoint of the domain of x = a+b

2
and assumes that the function is a constant

at that level over the entire domain of x ∈ [a, b].∫ b

a

g(x)dx ≈ (b− a)g

(
a+ b

2

)
(4)

A more sophisticated midpoint rule is the composite midpoint rule, which breaks
up the domain of the function g(x) into N intervals and applies the midpoint rule to
each interval.

2.2 Trapezoid rule (2 nodes)

The trapezoid rule is the area under a line that connects the function g(x) at the two
endpoints a and b. ∫ b

a

g(x)dx ≈ b− a
2

[g(a) + g(b)] (5)

A more sophisticated trapezoid rule is the composite trapezoid rule, which breaks
up the domain of the function g(x) into N intervals and applies the trapezoid rule to
each interval.

2.3 Simpson’s rule (3 nodes)

Simpson’s rule offers a smooth nonlinear (quadratic) alternative the linear approxima-
tions of the midpoint and trapezoid rules. Simpson’s rule finds a quadratic function in
x that passes through the end points and the midpoint of the function g(a), g

(
a+b

2

)
,

and g(b), which produces the following weights and values.∫ b

a

g(x)dx ≈ b− a
6

[
g(a) + 4g

(
a+ b

2

)
+ g(b)

]
(6)

Again, a more sophisticated Simpson’s rule is the composite Simpson’s rule, which
breaks up the domain of the function g(x) into N intervals and applies the Simpson’s
rule to each interval.

Exercise 1. You can verify that the analytical solution to the integral of the function

g(x) = 0.1x4 − 1.5x3 + 0.53x2 + 2x+ 1

between x = −10 and x = 10 is
∫ 10

−10
g(x)dx = 4, 373.33̄. Write a Python function

that will take as arguments an anonymous function that the user specifies representing
g(x), integration bounds a and b, and method = {’midpoint’,’trapezoid’,’Simpsons’}.
For this exercise, just do the simple methods (nodes equal 1, 2, and 3), not the com-

posit methods. Evaluate the numerical approximations of the integral
∫ b
a
g(x)dx using

all three Newton-Cotes methods in your function and compare the difference between
the values of these integrals to the true analytical value of the integral.

2



Exercise 2. Write a Python function that makes a Newton-Cotes discrete approx-
imation of the distribution of the normally distributed variable Z ∼ N(µ, σ). Let
this function take as arguments the mean µ, the standard deviation σ, the number
of equally spaced nodes N to estimate the distribution, and the number of standard
deviations k away from µ to make the furthest nodes on either side of µ. Have this
function return a vector of nodes of [Z1, Z2, ...ZN ] and a vector of weights [ω1, ω2, ...ωN ]
such that ωi is given by the integral under the normal distribution between the mid-
points of the two closest nodes. Define f(Z;µ, σ) as the pdf of the normal distribution
and F (Z;µ, σ) as the cdf.

ωi =


F
(
Z1+Z2

2
;µ, σ

)
if i = 1∫ Zmax

Zmin
f(Z;µ, σ)dZ if 1 < i < N

1− F
(
ZN−1+ZN

2
;µ, σ

)
if i = N

where Zmin =
Zi−1 + Zi

2
and Zmax =

Zi + Zi+1

2

What are the weights and nodes {ωn, Zn}Nn=1 for N = 11?

Exercise 3. If Z ∼ N(µ, σ), then A ≡ eZ ∼ LN(µ, σ) is distributed lognormally
and log(A) ∼ N(µ, σ). Use your knowledge that A ≡ eZ , log(A) ∼ N(µ, σ), and
your function from Exercise 2 to write a function that gives a discrete approximation
to the lognormal distribution. Note: You will not end up with evenly spaced nodes
[A1, A2, ...AN ], but your weights should be the same as in Exercise 2.

Exercise 4. Let Yi represent the income of individual i in the United States for all
individuals i. Assume that income Yi is lognormally distributed in the U.S. according
to Yi ∼ LN(µ, σ), where the mean of log income is µ = 10.5 and the standard
deviation of log income is σ = 0.8. Use your function from Exercise 3 to compute an
approximation of the expected value of income or average income in the U.S. How

does your approximation compare to the exact expected value of E[Y ] = eµ+σ2

2 ?

3 Gaussian Quadrature

Gaussian quadrature formulas for approximating an integral take the Newton-Cotes
approximation form

∫ b
a
g(x)dx ≈

∑N
n=1 ωng(xn) and optimally choose the weights ωn

and nodes xn given the total number of nodes N and some approximating polynomial
class hi(x). The N weights and nodes are chosen to make an exact integration rela-
tionship hold. That is, the N weights and nodes must hold exactly for polynomials
of order 2N − 1 in the following way,∫ b

a

hi(x)dx =
N∑
n=1

ωnhi(xn) for i = 0, 1, ...2N − 1 (7)

where hi(x) is an i-order polynomial in x.

3



As a simple example, suppose we want to approximate an arbitrary function g(x)
with Gaussian quadrature using a simple class of polynomials hi(x) = xi and only
N = 2 weights and nodes. (7) implies a system of four equations used to determine the

four variables (ω1, ω2, x1, x2) to approximate the integral
∫ b
a
g(x)dx ≈

∑N
n=1 ωng(xn).∫ b

a

kdx = ω1k + ω2k where h0(x) = k∫ b

a

xdx = ω1x1 + ω2x2∫ b

a

x2dx = ω1x
2
1 + ω2x

2
2∫ b

a

x3dx = ω1x
3
1 + ω2x

3
2

(8)

ForN = 2, the optimal weights and nodes that solve the system (8) are (ω1, ω2, x1, x2) =
(1, 1,−0.578, 0.578). The Python code to solve this nonlinear system could be a sim-
ple root finder such as scipy.optimize.root or one of the constrained minimizers in
scipy.optimize.minimize. In general, the spacing of the nodes will not be uniform.

The accuracy of the Gaussian quadrature approximation of the integral
∫ b
a
g(x)dx

increases in the number of nodes N . The accuracy of the approximation of the
integral can also be improved by the choice of polynomial family hi(x). In particular,
the families of orthonormal polynomials have multiple desirable properties. Because
of the orthogonality of their coefficients, the system (8) is easier to solve due to the
lack of collinearity.Also, the weights ωn turn out to be the zeros of the orthogonal
polynomial family. Lastly, these orthogonal families of polynomials can give very
accurate solutions to integrals of the form

∫ b
a
w(x)g(x)dx, where w(x) is the weighting

function of an orthonormal family of polynomials.
For a more detailed discussion of the theory behind Gaussian quadrature, see

Judd (1998, pp. 257-265) and Heer and Maussner (2009, 599-601). The general
applicability of Gaussian quadrature and its accuracy and efficiency advantage over
Newton-Cotes formulas is summarized by Judd (1998, p.265).

“Even when the asymptotic rate of convergence fore Gaussian quadrature
is no better than the comparable Newton-Cotes formula, experience shows
that Gaussian formulas often outperform the alternative Newton-Cotes
formula [in terms of accuracy].”

Exercise 5. Approximate the integral of the function in Exercise 1 using Gaussian
quadrature with N = 3, (ω1, ω2, ω3, x1, x2, x3). How does the accuracy of your approx-
imated integral compare to the approximations from Exercise 1 and the true known
value of the integral?

4

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize


Exercise 6. Use the Python Gaussian quadrature command scipy.integrate.quad

to numerically approximate the integral from Exercise 1.∫ 10

−10

g(x)dx where g(x) = 0.1x4 − 1.5x3 + 0.53x2 + 2x+ 1

How does the approximated integral from the scipy.integrate.quad command com-
pare to the exact value of the function?

4 Monte Carlo Integration

In the Newton-Cotes quadrature methods of approximating an integral nodes and
weights for the approximating function

∑N
n=1 ωng(xn) are chosen without much at-

tention to the effect of the placement of these nodes or the levels of the weights
on the accuracy of the approximation. Newton-Cotes methods are computationally
fast, but lack in accuracy. Gaussian quadrature methods spend more computational
time choosing “optimal” weights and nodes, which gives an accuracy payoff over
Newton-Cotes formulas. Monte Carlo integration methods use the computationally
fast method of drawing uniformly from the support of the variable of integration
and depends on a lot of draws to get the accuracy close.2 Although Monte Carlo
integration methods do not converge as quickly as Gaussian quadrature methods for
functions of one variable, they are especially valuable in integrating over functions of
multiple variables.

Let x ∈ Ω ⊂ Rm be a vector of length m of variables with domain Ω which is a
subset of Rm. We are interested in approximating following integral,∫

Ω

g(x)dx ≈ V
1

N

N∑
n=1

g (xn) where V =

∫
Ω

dx (9)

Equation (9) essentially says you can approximate the integral of a function g(x) on
domain Ω by taking the average of the evaluations of the function g at N random
draws of the vector xn multiplied by the volume of the domain.

An easy example of a univariate integral is
∫ 1

0
x dx (where g(x) = x). The Monte

Carlo approximation formula for this integral is the following.∫ 1

0

x dx ≈ V
1

N

N∑
n=1

xn =
1

N

N∑
n=1

xn (10)

It is easy to see that the answer to the exact integral on the left-hand-side of (10)
is 1/2. In the approximation on the right-hand-side of (10), V is the volume of the

2Judd (1998, pp. 309-311) spends significant time explaining that these methods are more cor-
rectly called “pseudo-Monte Carlo methods” because they make use of pseudo random number
generators, the use of which cannot invoke the law of large numbers or the central limit theorem. He
advocates the use of equidistributed sequences rather than pseudo random number generators from
the uniform distribution to create “quasi-Monte Carlo integral estimation”. However, the biases
introduced by pseudo random number generators are rarely significant in practice.

5

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad


domain of x ∈ [0, 1], which is 1. It is straightforward to see that the average of N
draws from a uniform distribution between 0 and 1 will converge quickly to 1/2.

Exercise 7 lets you try your hand at coding a classic Monte Carlo integration
approximation of the integral of a function of two variables to approximate the value
of π. The area of a circle with radius r = 1 is π. A way to visualize the Monte Carlo
approximation of the area of that circle, or π, is to enclose the circle in a square
with sides of length 2, in which the x-axis goes from -1 to 1 and the y-axis goes from
-1 to 1. The points in Figure 1 are the uniformly distributed random draws from
(x, y) ∈ [−1, 1]× [−1, 1]. Intuitively, the area of the circle is the fraction of the dots
(red dots divided by total dots) that are inside the circle or on the boundary of the
circle, multiplied by the area or volume of the square in which the circle lies.

Figure 1: Monte Carlo integral esti-
mation of area of unit ra-
dius circle

Following the intuition of the previous paragraph and of Figure 1, the exact area
of the circle can be written as an integral of the indicator function of coordinate
variables x and y in the following way.

Area =

∫
Ω

g(x, y)dx dy = π

where g(x, y) =

{
1 if x2 + y2 ≤ 1

0 else
and Ω = [−1, 1]× [−1, 1]

(11)

The exact integral (11) for the area of a unit radius circle can be Monte Carlo ap-
proximated using the form (9) resulting in the following function.∫

Ω

g(x, y)dx dy ≈ 4
1

N

N∑
n=1

g (xn, yn) (12)

6



Exercise 7. Use Monte Carlo integration to approximate the value of π. Define a
function in Python that takes as arguments an anonymous function g(x) of a vector
of variables x, the domain Ω of x, and the number of random draws N and returns
the Monte Carlo approximation of the integral

∫
Ω
g(x)dx. In order to approximate π,

let the functional form of the anonymous function be g(x, y) from (11) with domain
Ω = [−1, 1] × [−1, 1]. What is the smallest number of random draws N from Ω
that matches the true value of π to the 10th decimal 3.1415926535? [Your answers
may differ slightly depending on your draws of (xn, yn) from the bivariate uniform
distribution.]

5 Discrete Markov Approximation of Continuous

AR(1) Process

Suppose you have a random shock zt in your model that has some persistence accord-
ing to the following AR(1) process.

zt+1 = ρzt + (1− ρ)µ+ εt+1 where εt ∼ N(0, σ) and ρ ∈ [0, 1) (13)

The expected value of zt+1 is conditional on the current realization of the shock
E[zt+1|zt] = ρzt + (1 − ρ)µ but the variance of zt+1 is unconditional V ar[zt+1] = σ2.
The AR(1) process in (13) generates a variable that fluctuates around its mean µ, and
the expected value of the variable tomorrow E[zt+1|zt] is some convex combination of
the variable today zt and the mean µ.

Typical examples of these types of shocks in economics are shocks to ability, health
status, and productivity shocks—all of which exhibit persistence or dependence on
recent values. If the shock must be strictly positive, as is the case with productivity
shocks, the variable zt is simply exponentiated.

Yt = AtK
α
t L

1−α
t where At = ezt (14)

Notice that the variable At is lognormally distributed At ∼ LN
(
ρzt−1 + (1− ρ)µ, σ

)
because log(At) = zt and zt ∼ N

(
ρzt−1 + (1 − ρ)µ, σ

)
. You made a discretized

approximation of the i.i.d. (no persistence) version of this distribution in Exercise 3
and estimated average income in the U.S. using it in Exercise 4.

Tauchen and Hussey (1991) describe a quadrature-based method for producing ef-
ficient nodes and probabilities of a discrete first-order Markov process to approximate
a continuous AR(1) random variable.3 A classic example of where this discretization is
extremely valuable is in the stochastic intertemporal Euler equation (2) from Section
1.

u′(ct)
=βEzt+1|zt

[
(1 + rt+1 − δ)u′(ct+1)

]
⇒ u′(ct) = β

∫ b

a

(
1 + rt+1(zt+1)− δ

)
u′
(
ct+1(zt+1)

)
f(zt+1|zt)dzt+1

(2)

3Tauchen (1986) details a simpler non-quadrature based method for producing efficient nodes and
probabilities of a discrete first-order Markov process to approximate a continuous AR(1) random
variable.

7



The expectation on the right-hand-side of (2) is over zt+1 given zt, where zt+1 is
the AR(1) process described in (13). One of the most common nonlinear solution
techniques for the functional equations of the model characterized by (2) is value
function iteration on the following recursive Bellman equation.

V (k, z) = max
k′

u(k, z, k′) + βEz′|z
[
V (k′, z′)

]
(15)

The expectation on the right-hand-side of the Bellman equation (15) is simply an
integral of the form Ez′|z

[
V (k′, z′)

]
=
∫
z′
V (k′, z′)f(z′|z)dz′. However, it is difficult to

use standard Gaussian quadrature or Monte Carlo integration methods because the
value function V (k′, z′) is often only known at a few points.

One solution to this problem is to interpolate or fit some continuous function
Ṽ (k′, z′) to the known points of V (k′, z′) and then use Gaussian quadrature or Monte
Carlo integration to approximate the integral

∫
z′
Ṽ (k′, z′)f(z′|z)dz′. Heer and Mauss-

ner (2008) and Heer and Maussner (2009, p. 237) find that the errors in the extrap-
olated values of the interpolated function Ṽ beyond the bounds of the known points
of V cause the solution to be less accurate than using the Tauchen-Hussey method of
approximating f(z′|z) with a discrete first order Markov process.

References

Adda, Jérôme and Russell Cooper, Dynamic Economics: Quantitative Methods
and Applications, MIT Press, 2003.

Armington, Paul S., “A Theory of Demand for Products Distinguished by Place
of Production,” IMF Staff Papers, March 1969, 16 (1).

Dixit, Avinash K. and Joseph E. Stiglitz, “Monopolistic Competition and Opti-
mum Product Diversity,” American Economic Review, June 1977, 67 (3), 297–308.

Heer, Burkhard and Alfred Maussner, “Computation of Business Cycle Models:
A Comparison of Numerical Methods,” Macroeconomic Dynamics, November 2008,
12 (5), 641–663.

and , Dynamic General Equilibrium Modeling: Computational Methods and
Applications, second ed., Springer, 2009.

Judd, Kenneth L., Numerical Methods in Economics, MIT Press, 1998.

Tauchen, George, “Finite State Markov-chain Approximation to Univariate and
Vector Autoregressions,” Economics Letters, 1986, 20 (2), 177–181.

and Robert Hussey, “Quadrature-based Methods for Obtaining Approximate
Solutions to Nonlinear Asset Pricing Models,” Econometrica, March 1991, 59 (2),
371–396.

8


	Introduction
	Newton-Cotes Quadrature
	Midpoint rule (1 node)
	Trapezoid rule (2 nodes)
	Simpson's rule (3 nodes)

	Gaussian Quadrature
	Monte Carlo Integration
	Discrete Markov Approximation of Continuous AR(1) Process

