
BYU-MCL Boot Camp
Optimization Labs
Professor Richard W. Evans

1 Introduction

Well defined systems of equations often do not have analytical solutions. However,
numerical solutions can also be difficult to find if the system is highly nonlinear,
involves many equations, has singularities, involves inequality constraints, or some
combination of these. The objective of these exercises is to familiarize you with some
of the different root finding and optimization routines available through Python and
specifically in the scipy.optimize library. You will learn some of the advantages and
limitations of each one. You will come away from this understanding that numerical
optimization involves a little bit of artistry and an intimate understanding of the
theory behind the equations you are optimizing.

2 Root finding

Let F (x) be a system of m functions of the vector x of length n, and the function
F (x) returns a vector of length m. The root of the function is the particular vector x
such that F (x) = 0, where 0 is an m-length vector of zeros. Because many economic
models are characterized by systems of equations, the roots of those systems are often
the solutions to economic models.

If a system of equations F (x) = 0 is linear, it can be represented as Ax− b = 0
or Ax = b, where A is an m× n matrix, x is an n× 1 vector, b is an m× 1 vector,
and 0 is an m×1 vector of zeros. This is the classical linear algebra problem in which
there may be many, exactly one, or no solution to the linear system Ax = b.

1. There is exactly one solution to Ax = b if A is square (n × n or m = n) and
has full rank, rank (A) = n. This means A has n linearly independent rows and
A is invertible.

2. There are multiple solutions to Ax = b if rank (A) < n.

3. There is no solution to Ax = b if rank (A) > n.

If the system F (x) = 0 is nonlinear, the process of finding the roots is much less
straightforward. It often involves a Newton method and the evaluation of a gradient
or matrix of derivatives (Jacobian matrix).

Use the following description of the 3-period-lived agent, perfect foresight OLG
model from the first week of the course in order to complete Exercises 1 through 4
below. The decisions of the households in the economy can be summarized by the
following equations.

1

http://docs.scipy.org/doc/scipy/reference/optimize.html

(c1,t)
−γ − β(1 + rt+1 − δ)(c2,t+1)

−γ = 0 (1)

(c2,t)
−γ − β(1 + rt+1 − δ)(c3,t+1)

−γ = 0 (2)

c1,t + k2,t+1 − wt = 0 (3)

c2,t + k3,t+1 − wt − (1 + rt − δ)k2,t = 0 (4)

c3,t − (1 + rt − δ)k3,t = 0 (5)

wt − (1− α)A

(
Kt

Lt

)α
= 0 (6)

rt − αA
(
Lt
Kt

)1−α

= 0 (7)

Kt − k2,t − k3,t = 0 (8)

Lt − 2 = 0 (9)

If we substitute equations (3) through (9) into (1) and (2) and look only at the
steady-state, the steady-state values

(
k̄2, k̄3

)
are characterized by the following two

equations.

u′
(
w(k̄2, k̄3)− k̄2

)
− β

(
1 + r(k̄2, k̄3)− δ

)
× ...

u′
(
w(k̄2, k̄3) + [1 + r(k̄2, k̄3)− δ]k̄2 − k̄3

)
= 0

(10)

u′
(
w(k̄2, k̄3) + [1 + r(k̄2, k̄3)− δ]k̄2 − k̄3

)
− ...

β
(
1 + r(k̄2, k̄3)− δ

)
u′
(

[1 + r(k̄2, k̄3)− δ]k̄3
)

= 0
(11)

Let the parameter vector values of the model be given by θ = [β, γ, α, δ, A] =
[0.442, 3, 0.35, 0.6415, 1]. In Exercises 1 and 2, set the tolerance in the solver to
xtol=1e-10. Also, because some of the root finding methods in Exercise 2 do not
allow you to pass extra arguments into the root finding function, you will need to
define an anonymous function in addition to your steady-state distribution of capital
function. ksssolve is the function that I have defined for my root finding algorithm
to call to find the steady-state distribution of capital.

def ksssolve(kvec, params):

... # Define function to solve for steady-state distribution

... # of capital "kvec" given parameters vector "params"

For some of the root finders, like fsolve in Exercise 1, you can pass in many extra
arguments through the args=(params) syntax. However, two of the root finders in
Exercise 2 do not allow for extra arguments to be passed. So you’ll have to write an
anonymous function in Python to be an intermediate step between the root finding
command and the ksssolve function.

2

zero_func = lambda x: ksssolve(x, params)

For Exercises 1 and 2, you can write a root finding function syntax in the following
form,

import scipy.optimize as opt

...

kssvec = opt.[RootFinder](zero_func, kinit, [meth=’method’], [x]tol=1e-10)

that calls the anonymous function zero func, which passes both the guess for the
distribution of capital kinit and the parameters params to the ksssolve function,
regardless of whether fsolve or the particular method of root allows extra argument
passing.

The last little examples of Python code I want you to use is the time library for
clocking computation speeds of different solution methods as well as some output
printing commands.

import scipy.optimize as opt

import time

...

Put all parameter and function definition code outside of timer

...

start_time = time.time()

kssvec = opt.[RootFinder](zero_func, kinit, [meth=’method’], [x]tol=1e-10)

elapsed = time.time() - start_time

In order to have your script print the output that you want, you can use the
following code.

print(’The SS capital levels and comp. times for fsolve are:’)

print("k2ss_f = %.8f" % k2ss_f)

print("k3ss_f = %.8f" % k3ss_f)

print("Time Elapsed: %.6f seconds" % elapsed_f)

The % operator tells the print command that a string is going to be formatted. The
.8f and .6f commands tell the print command that the string following the second
% character is to be displayed as a floating point number with 8 and 6 decimal places,
respectively, represented after the decimal.

Exercise 1. Solve for the steady-state distribution of capital savings
(
k̄2, k̄3

)
from

the three-period lived agent perfect foresight model described in (10) and (11) above
using the scipy.optimize.fsolve command. Report the computed steady-state
distribution of capital

(
k̄2, k̄3

)
and how long (in seconds) it took to compute.

3

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve

Exercise 2. Solve for the same OLG steady-state distribution of capital savings(
k̄2, k̄3

)
using the alternative root finding command scipy.optimize.root with each

of the following methods options: hybr, broyden1, and krylov. One of these methods
will not work. Report the computed steady-state distribution of capital

(
k̄2, k̄3

)
for

each method and how long (in seconds) each one took to compute.

Exercise 3. What is the biggest difference between the solution from Exercise 1 and
different solution methods in Exercise 2? That is, what is the biggest (k̄2, k̄3)ex1 −
(k̄2, k̄3)ex2i where i = {hybr, broyden1, krylov} among methods that worked?

Exercise 4. Which method had the minimum computation time and which method
had the maximum computation time among the method in Exercise 1 and the two
methods that worked in Exercise 2? [NOTE: You will get different computation times
each time you run this. But the relative computation speeds ordering will remain the
same.]

Each solver uses different methods and different coding approaches and efficiencies
to arrive at the solution. So it can sometimes be a significant task to find a solver
that works. Once you find a class of solvers that works, you may face a tradeoff
between robustness and computational speed. Another library of convex optimization
functions for Python that wraps the BLAS, LAPACK, FFTW, UMFPACK, CHOLMOD,
GLPK, DSDP5, and MOSEK routines is cvxopt.

3 Unconstrained optimization (minimization)

The characterizing equations or data generating process (DGP) in an economic model
often come from some set of optimization problems. In the case of the OLG prob-
lem from the first chapter of the course and the infinite horizon, representative agent
DSGE model from the second chapter, both households and firms are optimizing.
Although some economic problems do involve minimization decisions (e.g., cost min-
imization, loss function minimization), most focus on some type of maximization.
This begs the question of why the code libraries of all major programming languages
have only minimizers and not maximizers. First, any maximization problem can be
rewritten as a minimization problem. Second, a rewritten minimization problem that
must converge to a finite number like zero is easier than a problem that can go to ∞
or −∞.

The difference between a root finder and a minimizer is subtle but important.
And the take away should be that a minimizer is more complex and less exact than
a root finder, but more flexible. Let’s use the general system of equations F (x) = 0
discussed in Section 2. A root finder is finding a solution x that delivers the zero
vector 0. But a minimizer is finding the vector x that minimizes the scalar valued
function g(x). Note that you often want g(x) to map x into the nonnegative real line
so that the minimizing solution x sets g(x) as close to the scalar 0 as possible. One
very common example for the nonnegative scalar valued function g(x) is the sum of

the squares of the value of each individual equation in F (x): g(x) =
∑m

i=1

[
Fi (x)

]2
.

This minimizer is a least squares solution technique.

4

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
http://cvxopt.org/

Exercise 5. Solve for the steady-state distribution of capital savings
(
k̄2, k̄3

)
from

the three-period lived agent perfect foresight OLG model described in (10) and (11) in
Section 2 above using the scipy.optimize.minimize minimizer command with the
method set to method=’Nelder-Mead’ and the tolerance set to tol=1e-10. Report
your solution and computation time.

Exercise 6. What do you get if you try to solve for the steady state in Exercise
5 using the initial guess (k̄2, k̄3) = (0.51, 0.51)? Why does this happen? [HINT:
try looking at the values of the other variables when (k̄2, k̄3) = (0.51, 0.51) is the
steady-state.]

Unconstrained optimization (minimization) computational routines obviously are
the right choice when the range of the vector being chosen is unbounded. But uncon-
strained minimizers can also work well, as in Exercise 5, when the bounds are well
known and theoretical conditions (Inada conditions) push the solution away from the
boundary. Care must simply be taken to input good starting values.

Now we use the representative infinitely lived DSGE Brock and Mirman (1972)
model with inelatically supplied labor of lt = 1 in every period and known closed form
solution for the equilibrium policy function from the second chapter to illustrate the
value of a minimizer. I have characterized a very simple form of i.i.d. uncertainty
for the firm’s productivity shock in (19) to make computing the expectation in the
household’s problem easier, and the Brock and Mirman (1972) policy function is in
equation (18). The decisions of the representative household and the representative
firm in the economy can be summarized by the following equations.

(ct)
−1 = βE

[
rt+1(ct+1)

−1
]

(12)

ct = wt + rtkt − kt+1 (13)

wt = (1− α)ezt
(
Kt

Lt

)α
(14)

rt = αezt
(
Lt
Kt

)1−α

(15)

Kt = kt (16)

Lt = 1 (17)

kt+1 = ψ(kt, zt) = αβeztkαt (18)

Pr(zt = −0.2) =
1

2
and Pr(zt = 0.2) =

1

2
(19)

If we substitute equations (13) through (18) into (12), then the equilibrium is charac-
terized by a sequence of Euler equations holding in every period of time in which the
expectations on the right-hand-side are formed using knowledge of the distribution

5

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

of the productivity shock zt+1 as described in (19).[
w(kt) + r(kt)kt − kt+1

]−1
= ...

βE

[
r(kt+1)

(
w(kt+1) + r(kt+1)kt+1 − ψ(kt+1, zt+1)

)−1] (20)

Now suppose that each period is a year, and you have 41 years of data on the
capital stock, wage, and interest rate in your economy {kt, wt, rt}41t=1. Suppose that
you thought that the data {kt, wt, rt}41t=1 were generated by a process described in
equations (12) through (19). An equivalent way of saying that is to suppose that you
though the data were generated by the intertemporal Euler equation (20). But you
do not know the value of the parameters of the model [α, β]. How might you estimate
those parameters [α, β] to make the model (20) best match the data {kt, wt, rt}41t=1?
We want to choose parameter values α and β that make the model match up best
with the data in some sense.

Define the parameter vector as θ = [α, β]. Suppose we can write the characterizing
equations of the model, or data generating process (DGP), in a form in which the
expected value of the characterizing equations equals zero. Then the generalized
method of moments (GMM) approach of estimating the parameter vector θ is to
choose θ to minimize some scalar-valued nonnegative function of those equations.1

Put differently, GMM chooses θ to minimize a scalar function (or function of moments)
of the parameters that should equal zero. Each equation can be thought of as a
moment or function of the parameters.

A set of functions of the parameters in the Brock and Mirman (1972) model for
the 41 years of capital stock data are the 40 intertemporal Euler equations that can be
evaluated and must hold over that period. Further, these equations can be rearranged
to equal zero, and they hold in expectation.[

w(kt) + r(kt)kt − kt+1

]−1
− ...

βEzt+1

[
r(kt+1)

(
w(kt+1) + r(kt+1)kt+1 − ψ(kt+1, zt+1)

)−1]
= 0

for 1 ≤ t ≤ 40

(21)

The difference in expected marginal utilities that equals zero as represented in (21)
is often referred to as an Euler error. The GMM approach to estimation of the Brock
and Mirman (1972) model is to choose θ = [α, β] to minimize the sum of squared
Euler errors given the data {kt, wt, rt}41t=1.

This problem is overidentified in that we have 40 equations or moments and 2
unknowns. As such, no combination of θ = [α, β] is likely to set all 40 equations or
moments represented in (21) simultaneously equal to zero.2 So we just want to choose

1See Davidson and MacKinnon (2004, Ch. 9) for a more detailed treatment of GMM. The
estimation methods of linear least squares, nonlinear least squares, generalized least squares, and
instrumental variables estimation are all specific cases of the more general GMM estimation method.

2Note that θ could be chosen to exactly set the moments to zero, exactly solving (21), if we had
exactly as many parameters to estimate as we had equations or moments.

6

θ to minimize the sum of squared Euler errors. To see how this works, we rewrite
(21) in its inexact Euler error form.[

wt + rtkt − kt+1

]−1
− ...

βEzt+1

[
r(kt+1)

(
w(kt+1) + r(kt+1)kt+1 − ψ(kt+1, zt+1)

)−1]
= µt(θ)

for 1 ≤ t ≤ 40

(22)

For given values of the parameters θ and for given data {kt, wt, rt}41t=1, the Euler errors
in (22) evaluate to a sequence of 40 scalars. A GMM estimator of the parameter vector
θ̂ = [α̂, β̂] can be represented in the following way.

θ̂ = arg min
40∑
t=1

µt(θ)
2 (23)

Computing the Euler errors in (22) can be a little tricky because you have to
evaluate the expectation in the second term as some type of integral. The timing of
the representative household’s decision each period and is such that the household
only knows the current period wage wt, interest rate rt, capital investment from the
previous period kt, and capital investment decision for the current period kt+1. So
even though the econometrician has the entire time series of wages, interest rates,
and capital stocks {kt, wt, rt}41t=1, the households only have the current period’s data
and the point of any decision. So they must calculate an expectation over the next
period. Because we have simplified the shock process for zt in (19) to be i.i.d. and
discrete with only two values, evaluating the expected value in the Euler error (22)
is fairly straightforward.

1

wt + rtkt − kt+1

− β 1

2

[
αe−0.2kα−1t+1

(1− αβ)e−0.2kαt+1

]
−β 1

2

[
αe0.2kα−1t+1

(1− αβ)e0.2kαt+1

]
= µt(θ)

for 1 ≤ t ≤ 40

(24)

Note how much cancels in the last two terms on the left-hand-side of (24). In fact,
the series of Euler errors simplifies down to a zero version of the policy function in
(18).

αβ(wt + rtkt)− kt+1 = µt(α, β) for 1 ≤ t ≤ 40 (25)

One last characteristic to note from the characterizing equation (25) or DGP is
that we cannot identify α and β separately. The two parameters enter every equation
as a product αβ, so we will not be able to identify both parameters unless we had
another set of equations in which α and β entered in a way different from a product.

Exercise 7. Assume that the capital share of income α = 0.35. Use the 41 years
of data {kt, wt, rt}41t=1 in the tab-delimited file gmmdata.txt and the simplified rep-
resentation of the Euler errors in (25) to estimate by GMM the discount factor β
that minimizes the sum of squared Euler errors. In the file gmmdata.txt, each row

7

is a period, the first column is capital kt, the second column is the wage wt, and
the third column is the interest rate rt. Use the scipy.optimize.minimize mini-
mizer command with the method set to method=’Nelder-Mead’ and the tolerance
set to tol=1e-10. Report your solution for β̂, the vector of Euler errors, the sum
of squared Euler errors

∑40
t=1 µt(β̂)2, and the computation time. [Try some different

initial guesses for β to see how robust this GMM estimation method is.]

β̂ = arg min
40∑
t=1

µt(β)2

If you were serious about the econometrics behind estimating β̂, you would want
to include an optimal weighting matrix in the criterion function (sum or squared Euler
errors) and also calculate the vector of standard errors associated with the vector of
parameter estimates. See Davidson and MacKinnon (2004, Ch. 9) for more details.

As a coding note, Exercise 7 asks you to report not only your GMM estimate for
β̂, but also the vector of Euler errors and the sum of squared Euler errors (criterion
function). The sum of squared errors is easy because it is one of the objects automat-
ically saved as output by the scipy.optimize.minimize function. Suppose I had
executed my minimize function with the following line of code.

parvec = opt.minimize(crit_func, parinit, method=’Nelder-Mead’, tol=1e-10)

The return object parvec is called a result object and automatically stores a
number of important results of the minimization function. The first one that is
probably most important is the array of parameter estimates in parvec.x. But
the sum of squared Euler errors will be stored in parvec.fun. You can see all the
objects stored in parvec by typing parvec in the command line after running the
minimization script.

You can save your entire vector of Euler errors by declaring the array as a vector
of zeros before the function being minimized is called. Then you must refer to the
vector of Euler errors within the function being minimized as ArrayName[:]. This
tells Python that the object within the function is the same one declared outside of
the function. You only want to do this in the case of objects that you will need for
future use in your computations.

EulErrVec = np.zeros(data.shape[0]-1)

...

def gmm_crit(paramvec, params, data):

...

EulErrVec[:] = alpha * beta * (wt + rt * kt) - ktp1

...

8

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

4 Constrained optimization (minimization)

The problem with using the unconstrained minimizer in Exercise 7 is that the param-
eter that we were trying to estimate was constrained β ∈ (0, 1). Luckily, our problem
was very well behaved, and the constraints on β were not a problem. The GMM
estimator returned the same β̂ for many different initial guesses. However, this is not
always the case. In many economic problems, the estimation will go to a place that is
outside the constraints of the model unless those constraints are explicitly accounted
for in the minimization. That is, constraints are specified in economic models be-
cause they are often binding. Your task in Exercise 8 is to do the same operation as
in Exercise 7 but with a constrained minimizer.

One note regarding the constraints is important before actually executing a con-
strained minimization. scipy.optimize.minimize has two constrained minimizers—
meth=’L-BFGS-B’ and meth=’TNC’—for simple lower bound and upper bound con-
straints. Two other constrained minimizers—meth=’COBYLA’ and meth=’SLSQP’—
allow for more complex forms of constraints. In our example, the discount factor
is restricted to β ∈ (0, 1). The parenthesis mean that 0 and 1 are not included in
the feasible set. When we enter constraints in a python minimizer, the bounds are
inclusive. So we have to enter them as something like (ε, 1−ε), where ε is some small
positive number.

parvec = opt.minimize(crit_func, parinit, method=’L-BFGS-B’, \

bounds=[(1e-10,1-1e-10)], tol=1e-10)

Exercise 8. Assume that the capital share of income α = 0.35. Use the 41 years
of data {kt, wt, rt}41t=1 in the tab-delimited file gmmdata.txt and the simplified rep-
resentation of the Euler errors in (25) to estimate by GMM the discount factor β
that minimizes the sum of squared Euler errors. Use the scipy.optimize.minimize

constrained minimizer command with the method set to method=’L-BFGS-B’ and the
tolerance set to tol=1e-10. Input the bounds to be β ∈ [ε, 1− ε], where ε = 1e− 10.
Report your solution for β̂, the vector of Euler errors, the sum of squared Euler errors∑40

t=1 µt(β̂)2, and the computation time.

β̂ = arg min
40∑
t=1

µt(β)2 s.t. β ∈ (0, 1)

References

Brock, W. A., and L. Mirman (1972): “Optimal Economic Growth and Uncer-
tainty: the Discounted Case,” Journal of Economic Theory, 4(3), 479–513.

Davidson, R., and J. G. MacKinnon (2004): Econometric Theory and Methods.
Oxford University Press.

9

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

	Introduction
	Root finding
	Unconstrained optimization (minimization)
	Constrained optimization (minimization)

