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1 Structural Model Estimation

Structural model estimation is the estimation of model parameters θ to match the
model to data in some sense. We already discussed generalized method of moments
(GMM) estimation of a structural model in a Python lab. Define a dynamic economic
model as a system of difference equations that defines how endogenous variables xt
progress over time,

F (xt+1,xt, zt; θ) = 0 (1)

where zt is the vector of exogenous state variables, and θ is a vector of parameters of
the model. This structural model is the data generating process (DGP) for the
variables xt and zt.

As an example, the DGP or structural model for the Brock and Mirman (1972)
stochastic growth model is the following.
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Note that the parameters of the model are (α, β, zL, zH), where zL and zH are the
two possible values of zt that control both the mean and the variance of the shock
process. If we substitute equations (3) through (7) into (2), the DGP can be more
simply summarized as a one-equation sequence of nonlinear second-order difference
equations in xt ≡ [kt, zt].(
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When you substitute in the known policy function of kt+1 = ψ(kt, zt) = αβeztkαt ,
Euler equation (9) reduces to a zero function version of the policy function.

αβ (wt + rtkt)− kt+1 = 0 (10)
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This is the equation that generates the data, and is also sometimes called the charac-
terizing equation (or characterizing equations when it is a system of equations). Equa-
tion (9) can be represented as F (xt+2,xt+1,xt; θ) = 0, where θ = [α, β, zL, zH ] is the
vector of model parameters. Equation (10) can be represented as F (xt+1,xt; θ) = 0.

The question of structural model estimation is how do we choose values for the
parameter vector θ of the DGP. Once we know θ and an initial value for the system
x0 ≡ [k2,0, k3,0] we can simulate the model or generate data. But different parameter
values θ will generate different data.

2 When you have the data: GMM and MLE

When the data represented in the model (ct, Kt, Yt, rt, wt) are available, we can use
generalized method of moments (GMM)1 or maximum likelihood estimation (MLE)
to estimate the parameters of the model. We covered GMM as an application in the
Python optimization lab. We will cover MLE in the lecture on distribution fitting.
Both methods use different assumptions about the DGP to estimate the parameters.
Both methods have strengths and weaknesses.2

MLE requires the modeler to assign a specific functional form to the distribution
of the shocks in the model. Once this is done, the modeler can use the distribution
of the shocks and the data to create a likelihood function for the observed data.
The MLE estimate of the parameter vector θ̂MLE is the one that maximizes the
likelihood function of the observed data. GMM remains completely agnostic as to
the distribution of the shocks. The GMM estimate is simply the parameter vector
θ̂GMM that minimizes the errors in the characterizing equations.

3 When you don’t have the data: Calibration and

SMM

Sometimes, all the data necessary to evaluate the characterizing equations of the
model (or DGP) are not available. In the Brock and Mirman (1972) model above,
equation (10) shows that kt, wt, rt are a minimum set of variables necessary to eval-
uate the characterizing equations, assuming that the productivity shocks zt are not
observable. An even weaker condition is that you might have data, but you are not
confident that all of it matches up well with the data concepts represented by the
variables in your model. Examples include latent variables and censored variables.
In these cases, you need a way to estimate the parameters of your model without all
the data in the DGP.

Edward Prescott was one of the earliest supporters of a method—called calibration—
for structurally estimating the parameters of a model.3 In its simplest form, cali-

1GMM was first formalized by Hansen (1982).
2Fuhrer et al. (1995) find evidence that MLE estimators dominate GMM estimators in a certain

class of DSGE models.
3See Prescott and Candler (2008) and Kydland and Prescott (1982).
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bration involves taking parameters from other studies (particularly, microeconomic
studies), and using those parameter values in the macroeconomic model. In its most
general form, calibration involves choosing parameters to make simulated output of
the model match the corresponding output from the data. Simulated method of mo-
ments (SMM) is the method of estimating model parameters that most closely match
simulated model moments to empirical moments.4

The description here of SMM follows that of Adda and Cooper (2003, p. 87). Let
{x(zt, θ0)}Tt=1 be a sequence of observed data generated by the true shocks zt and the
true parameter vector θ0. Let {x(zst , θ)} for t = 1, ...T and s = 1, ...S be a set of S
simulated time series of the data with each series being T periods long and conditional
on the parameter vector θ of i parameters.

Define m(x) as a vector of j empirical moments that are each functions of the
data {x(zt, θ0)}Tt=1. Let m

(
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)
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the simulated data.

θ̂SMM = arg min
θ

[
m(x)− 1

S

S∑
s=1

m
(
x(zst , θ)

)]′
W−1

[
m(x)− 1

S

S∑
s=1

m
(
x(zst , θ)

)]
(11)

The SMM estimator θ̂SMM minimizes the distance between the vector of empiri-
cal moments m(x) and the average of the S simulated vectors of model moments
1
S

∑S
s=1 m

(
x(zst , θ)

)
. Each moment vector is j × 1.

The j × j matrix W−1 between the two moment difference vectors in (11) is an
optimal weighting matrix. This matrix provides more efficient estimation of θ̂SMM

because some of the simulated moments may be measured more precisely than others.
For this reason, the optimal weighting matrix is simply the inverse of the variance-
covariance matrix of the simulated moments. In other words, moments with a higher
variance across simulations will have a lower weight in the criterion function used to
estimate θ̂SMM . However, for this section, we will use the identity matrix for our
weighting matrix. Although not optimal, it is consistent. It simply weights each
moment equally.

A few comments on identification in SMM are important. First, for estimating
i parameters, you must have at least i moments to match. That is, i ≤ j, where
j is the number of moments. Second, you want to choose moments that are closely
associated with certain parameters you are estimating. For example, a discount factor
influences how you trade off consumption today with consumption tomorrow, so a
couple of good moments for identifying the discount factor might be corr(ct, ct+1) or
corr(kt, kt+1).

Below are the steps to executing an SMM estimation.

1. Draw S vectors of T shocks each for the S simulations of the model time series.
It is important to only draw these shocks once and then use them for each choice
of parameters θ as you converge to θ̂SMM .

4Davidson and MacKinnon (2004, pp. 383-392) call this approach the method of simulated
moments (MSM). Adda and Cooper (2003, pp. 87-89) has a clean, simple explanation of SMM. In
addition to the early calibration paper Kydland and Prescott (1982), SMM was further developed
by McFadden (1989), Lee and Ingram (1991), and Duffie and Singleton (1993).
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2. Write a constrained minimization function that takes a guess of a parameter
vector θ, a matrix of S time series of T periods of shocks, a starting value for k1,
and a vector of empirical moments m(x) and minimizes the distance between
the average of the simulated model moments and the empirical moments.
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4 Exercises

Exercise 1. Estimate the four parameters of the Brock and Mirman (1972) model
(α, β, zL, zH) described by equations (2) through (8) by SMM. Choose the four pa-
rameters to match the following six moments from the 66 periods of empirical data
{Yt, kt, ct}66t=1 in smmdata.txt: mean(Yt), mean(ct), var(Yt), var(ct), corr(kt, Yt), and
corr(kt, kt+1). In your simulations of the model, set T = 66 and S = 10, 000. Start
each of your simulations from k1 = mean(kt) from the smmdata.txt file. Use the
scipy.optimize.minimize constrained minimizer command with the method set
to method=’TNC’ and the tolerance set to tol=1e-10. Input the bounds to be
α, β ∈ [ε, 1 − ε], zL ∈ [−2, 0], and zH ∈ [1, 3], and where ε = 1e − 10. Report
your solution (α̂, β̂, ẑL, ẑH), the vector of moment differences, the sum of squared
moment differences, and the computation time.

Once you have successfully estimated the parameters of a model by SMM, the
question remains of how good the estimates θ̂SMM are. How can you check the
accuracy? The first way is to see how close your simulated average of your model
moments came to their target empirical moments that you were trying to match.
However, this is not sufficient because you chose the parameters to minimize that
distance. The best SMM estimations match well the moments that they used for
the estimation, and they match some important moments that were not used in the
estimation. These “outside” moments are a key piece of evidence that your model
and estimation are good.
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