
Econ 413R: Computational Economics
Spring Term 2013

Time Series Data Filtering

1 Introduction

Definition: A time-series ut is said to be stationary if the expected value, variance,

and autocovariance of the series are independent of the time period t.

Many economic models are stationary, but many economic variables have readily

observable growth trends. To reconcile this difference, economics often compare their

stationary models with “detrended” data, or date where the growth component has

been removed.

There are many ways to detrend a time series and the method used to remove the

trend can seriously change the resulting series. Hence it is important to understand

the theory behind time series decomposition.

A few common ways to detrend data include differencing (especially for logged

data), line/polynomial fitting, HP filters, band-pass filters, and others.

We go over four common data-filtering techniques. OLS and HP are given first

naively, then in depth, followed by Band-Pass filters.

2 OLS Filter

The goal of any filter is to decompose the time series into several series with common

frequencies. Let yt be our data at time-period t. We want to decompose the data
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into growth component, τt, and the cyclical component, ct

yt = τt + ct for t = 1, . . . , T (2.1)

The simplest of filters involves fitting set τ to be the “polynomial of best fit”

through the time series. The “polynomial of best fit” minimizes the following expres-

sion:

min
β
‖y − βx‖

For a polynomial of degree 1 (a straight line), the solution is given by the well

known “normal equations” given by β̂ = (XTX)−1XTy, where

X =


1 x1

1 x2
...

1 xn


We can generalize this for a polynomial of degree k using the kth degree Vander-

monde matrix and the same set of normal equations.

X =


1 x1 x21 · · · xk1

1 x2 x22 · · · xk2
...

. . .
...

1 xn x2n · · · xkn


Using a quadratic polynomial filter on logged investment data gives the following

trend series (depicted in red) and cyclical series (depicted in the second subpanel)

As desired, the resulting series appears to have a constant mean and variance

throughout the entire series.
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Figure 1: OLS Filter (quadratic)

3 HP Filter

The Hodrick-Prescott (HP) filter was popularized by Hodrick and Prescott (1997). It

generates a line of best fit very differently from polynomial interpolation or OLS. An

HP is a kind of moving average (MA(k)) filter, meaning that the point in the filtered

series at time t is a weighted average of the raw data over k points before/after t.

As given in 2.1, it aims to decompose the raw data into a smooth “trend series”

(somtimes referred to as the “growth series”) and a stationary “cyclical series” such

that yt = τt + ct

To find the τ series that best fits the data, we minimize the following

min
{τt}

{
T∑
t=1

(yt − τt)2 + λ

T∑
t=1

[(τt − τt−1)− (τt−1 − τt−2)]2
}

(3.1)

with ct = yt−τt giving the deviation from the trend component (a mean zero process).

The parameter λ penalizes changes in the trend component. A higher λ will result in

a smoother trend component. In fact, as λ approaches infinity, the optimal τt − τt−1
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tends towards a constant β, so τt = τ0 + βt, and the filtered series is simply the least

squares solution. The proof of this is left as an exercise.

To compute the filter, we can write the first-order-conditions for 3.1, in matrix

form as shown:

ΛT = Y

T = Λ−1Y

where the (n,m)th entry of Λ is the λ coefficient for the ith first-order-condition found

by differentiating with respect to τi. The matrix Λ is symmetric in all cases and

sparse for large values of T, which can allow us to compute Λ−1 very quickly.

An HP filter with λ = 1600 on quarterly data will generate a filter that moves

along the data more flexibly than the quadratic polynomial, as shown in the figure

below.

Figure 2: HP Filter (λ = 1600)

How does the stationary series in figure 2 (HP filter) compare to the stationary

series from the OLS filter in figure 1? Does the HP generate a more cyclical series
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that is more or less stationary than OLS?

4 Spectral Analysis

Any time-series can be fitted with an appropriately high-order polynomial. Suppose

we have a time series X = {x1, x2, . . . , xT . With T observations we can specify a

polynomial of order T − 1 that will pass through each point.

Similarly any time series can be fitted with a weighted sum of an appropriate num-

ber of sinusoidal wave functions of various wavelengths. Again, with T observations

we can sum T − 1 wave functions and the resulting time-path will pass through each

point. The mapping from oberservations at varipus points in time to wave functions

of various frequencies is called a Fourier transformation.

When removing trends from data it is useful to think aboout the effects the filter

has on the various constiutent sine waves. In order to do this we need to first go

though the basics of spectral analysis. We will only be scratching the surface here.

For more in deapth discusions see...

4.1 Discrete Fourier Transform

Consider a sequence of (possibly complex) numbers, X = {x1, x2, . . . , xT}. The

discrete Fourier transform (DFT) of this series is defined as:

x̂k =
T∑
t=1

xte
−i2πkt/T (4.1)

Each x̂k is a complex number that contains information on the amplitude and phase

of a sine wave. The sum of these sine waves exactly recreates the time-series X. The

frequency for x̂k is k/T cycles per sample. The amplitude of the sine wave is given

by (4.2) and the phase by (4.3).

|x̂k|
T

=

√
Re(x̂k)2 + Im(x̂k)2

N
(4.2)
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arg(x̂k) = atan2{Im(x̂k), Re(x̂k)} (4.3)

The inverse discrete Fourier transform (IDFT) is:

xt =
1

T

T∑
k=1

yke
i2πkt/T (4.4)

The DFT is often written as F so that the series X̂ = {x̂1, X̂x2, . . . , x̂T} can be

expressed as the DFT of X by writing X̂ = F(X). The IDFT, not surprizingly, is

written X = F−1(X̂)

X is a representation of the series in the “time domain” and Y is a representation

of the same series in the “frequency domain”.

4.2 Spectral Density

Consider an discrete infinite time series denoted X. We will define the power of X

as in (4.5).

P ≡ lim
t→∞

1

2T

T∑
−T

x2t (4.5)

Consider now a subsample of the series running from 1 to T and denote this as

XT (t)

If we define ω as the “angular frequency” measured in radians, so that ω = 2πk,

then the DFT of XT (t) can be denoted X̂T (ω) = F{XT (t)}. The power spectral

density (PSD), spectral density function (SDF) or simply “spectral density” of X is

defined in (4.6).

Sx(ω) ≡ lim
T→∞

E{|X̂T (ω)|
2
} (4.6)

Since ω is the angular frequency all the information about the spectral density is

contained on the interval [0, 2π].

Some useful properties of the SDF are: First, Sx(−ω) = Sx(ω), the SDF is sym-

metric about ω = 0. Second, the SDF describes the distribution of the variance of

XT over various frequencies. Var(X) = 2
∫ 1/2

0
Sx(ω)dω.
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The cross-spectral density between two time series X and Y is defined in (4.7)

Sxy(ω) = lim
T→∞

E
{
|X̂T (ω)ŶT (ω)|

}
. (4.7)

The cross-spectral density describes the distribution of the covariance of XT and

Y T over various frequencies. Cov(X, Y ) = 2
∫ 1/2

0
Sxy(ω)dω.

4.3 Periodogram

In practice, we cannot get an infinite series of observations and we need an approxi-

mation or estimate of based on finite data. The classic estimate is the periodogram.

The periodogram is defined by (4.8).

a(k) =
2

T

T∑
t=1

xt cos(kt)dt

b(k) =
2

T

T∑
t=1

xt sin(kt)dt

Px(k) =
√
a(k)2 + b(k)2

(4.8)

The periodogram is normally plotted with ω on the horizontal axis and Px on the

veritcal axis.

There are a host of additional issues involved with properly estimating a peri-

odogram. See ??? for an in depth discussion.

There are prepackaged functions in both Python and MATLAB that will generate

the periodogram.

In Python there are several options. One is the spectrum package. The function

to use is speriodogram . The documentation for this function is as follows:

speriodogram(x, NFFT=None, detrend=True, sampling=1.0,

cale by freq=True, window=’hamming’, axis=0)

Parameters:
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x an array or matrix of data samples.

NFFT length of the data before FFT is computed (zero padding)

detrend (bool) detrend the data before co,puteing the FFT

sampling (float) sampling frequency of the input data.

scale by freq

window (str)

Returns:

2-sided PSD if complex data, 1-sided if real.

if a matrix is provided (using numpy.matrix), then a periodogram is

computed for each row. The returned matrix has the same shape as

the input matrix. The mean of the input data is also removed from

the data before computing the psd.

In MATLAB the function is periodogram from the signal processing toolbox.

The documentation says the following:

pxx = periodogram(x)returns the periodogram power spectral density (PSD)

estimate of the input signal, x, using a rectangular window. If x is real-valued,

pxx is a one-sided PSD estimate. If x is complex-valued, pxx is a two-sided PSD

estimate. The number of points, nfft, in the discrete Fourier transform (DFT)

is the maximum of 256 or the next power of two greater than the signal length.

4.4 Moving Average Filters

Suppose we create a filtered series, yt, by taking a moving average of the raw data

series xt.

yt =
∞∑

j=−∞

bjxt−j = b(L)xt (4.9)
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Attempting to derive the autocovariance, γk = E(ytyt−k) in the time-domain results

in the following ∑
j,l

bjblγk+l−j(x),

which is a cumbersome convolution. By doing calculations in the spectral domain,

we can use the Fourier transform of the bj coefficients,
∑

j e
−iωj = b(eiω) to derive

the the formula for the spectral density of yt given the spectral density of xt:

Sy(ω) = b(e−iω)b(eiω)S(ω)x = |b(e−iω)|2Sx(ω) (4.10)

Note that this has the form of Var(y) = Var(bx) = b2Var(x). The multivariate

equivalent is

Sy(ω) = B(e−iω)Sx(ω)B(eiω)′ (4.11)

We can use this filtering formula to derive the spectral density of any ARMA

series by using a white noise series as our raw data

xt = θ(L)εt =
∞∑
j=0

θjεt−j

Using the filtering formula, we get a formula which we can now use to find the

spectral density of any ARMA process:

Sx(ω) = θ(e−iω)θ(eiω)σ2
ε (4.12)

4.5 Some Examples

4.5.1 Simple Moving Average Filters

As an example, apply this to an MA(1) process, xt = (1 + θL)εt. We get

Sx(ω) = (1 + θe−ω)(1 + θeiω)σ2
ε = (1 + θ(eiω + e−iω) + θ2)σ2

ε = (1 + 2θcos(ω) + θ2)σ2
ε
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Pedersen (2001) shows that the power transfer function for a moving average filter

is |HMA(ω)|2 =
(

sin(τω/2)
τ sin(ω/2)

)2
, where τ is the number of periods over which the moving-

average is taken. The gain of any filter is related to the transfer function by the

following formula.

G =
√

1− |H(ω)|2. (4.13)

Figure 3: Gain of the Moving-Average Filter
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4.5.2 Hodrick-Prescott Filter

We can also use it on an HP filter. Start by rewriting 3.1 using the lag operator L to

put all τi variables into the same period t. Differentiate with respect to τt to get the

following:

C(L) ≡ λ(1− L)2(1− L−1)2

λ(1− L)2(1− L−1)2 + 1
=

λL−2(1− L)4

λL−2(1− L)4 + 1
(4.14)

The filtering formula gives us the following:

|HHP (ω)|2 =

∣∣∣∣ λ(1− e−iω)2(1− eiω)2

λ(1− e−iω)2(1− eiω)2 + 1

∣∣∣∣2 =

∣∣∣∣ 4λ[1− cos(ω)]2

4λ[1− cos(ω)]2 + 1

∣∣∣∣2 (4.15)

Plotting the gain over the domain of ω ∈ [0, π) gives us an idea of what frequencies
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are filtered out by the HP series. Figure 4 gives plots for several values of λ .

Figure 4: Gain of the HP Filter
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Hodrick and Prescott (1997) argue that the appropriate value of λ when filtering

quarterly data for business cycle frequencies is λ = 1600.

5 Differencing Filters

Other simple filter have been propoed and used. It is helpful to examine their effect

on the spectral density of a time series. Pedersen (2001) shows the power transfer

functions for some of these filters. One of these that is commonly used is the First-

Difference filter. The power transfer function for a first-difference filter is |HFD(ω)|2 =

2[1− cos(ω)]. From this we can calculate the gain using (4.13).

Differencing the series d times is a d-difference filter and it’s power transfer func-

tion is given by (5.1)

|HDD(ω)|2 = 2d[1− cos(ω)d] (5.1)

11



Figure 5: Gain of the d-Difference Filter
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6 Band-Pass Filters

A band-pass filter works in a way similar to the HP filter in the way that it decomposes

the data into a trend series and a cyclical series. The major difference between the

band-pass filter and an HP filter is that the band-pass filter is two-sided. That is, it

removes frequencies outside the chosen band that are higher than the upper cutoff

and lower than the lower cutoff. By contrast, the HP filter is one-sided and removes

only frequecies below a lower cutoff. As a result, the term “band-pass filter” refers to

a whole family of filtering techniques.

Figure 6, which is shamelessly downloaded from Wikipedia, illustrates a typical

band-pass filter, in this case for use with audio equipment. The gain of the filter is

the red line. The cutoffs for the bandwidth (B) are fL and fH . An ideal filter would

follow the verital dashed lines and be zero outside the bandwidth and one inside.

However, with finite samples it is impossible to actually implement an ideal filter.

As the red line shows, some frequencies outside the band will be passed, and some

frequencies inside the band will be attenuated. A good filter is one that comes close

to the step function of the ideal filter.
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Figure 6: Stylized Band-Pass Filter

There are a variety of band-pass filters available for use with economic time se-

ries. The most widely used are the Baxter-King filter (Baxter and King, 1999) and

the Christiano-Fitzgerald filter (Christiano and Fitzgerald, 2003). Band-pass filters

specify a range of frequecies that are passed through the filter. For business cycle

analysis frequencies corresponding to a band between six and thiry-two quarters are

most often used.

7 Filter Programs

7.1 Python

A good source for time-series filter, including the three discussed in this chapter is the

scikits.statsmodels package. The filters are called as tsa.filters.hpfilter,

tsa.filters.bkfilter and tsa.filters.cffilter.

The internal documentation follows.

Hodrick-Prescott filter
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hpfilter(X, lamb=1600)

Parameters:

X : array-like -- The 1d ndarray timeseries to filter of length

(nobs,) or (nobs,1)

lamb : float -- The Hodrick-Prescott smoothing parameter. A value

of 1600 is suggested for quarterly data. Ravn and Uhlig suggest

using a value of 6.25 (1600/4**4) for annual data and 129600

(1600*3**4) for monthly data.

Returns:

cycle : array -- The estimated cycle in the data given lamb.

trend : array -- The estimated trend in the data given lamb.

Baxter-King bandpass filter

bkfilter(X, low=6, high=32, K=12)

Parameters:

X : array-like -- A 1 or 2d ndarray. If 2d, variables are assumed

to be in columns.

low : float -- Minimum period for oscillations, ie., Baxter and

King suggest that the Burns-Mitchell U.S. business cycle has 6 for

quarterly data and 1.5 for annual data.

high : float -- Maximum period for oscillations BK suggest that

the U.S. business cycle has 32 for quarterly data and 8 for annual

data.

K : int -- Lead-lag length of the filter. Baxter and King propose

a truncation length of 12 for quarterly data and 3 for annual data.

Returns:

Y : array -- Cyclical component of X

Christiano Fitzgerald asymmetric, random walk filter
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cffilter(X, low=6, high=32, drift=True)

Parameters:

X : array-like -- 1 or 2d array to filter. If 2d, variables are

assumed to be in columns.

low : float -- Minimum period of oscillations. Features below

low periodicity are filtered out. Default is 6 for quarterly data,

giving a 1.5 year periodicity.

high : float -- Maximum period of oscillations. Features above

high periodicity are filtered out. Default is 32 for quarterly

data, giving an 8 year periodicity.

drift : bool -- Whether or not to remove a trend from the

data. The trend is estimated as np.arange(nobs)*(X[-1] -

X[0])/(len(X)-1).

Returns: cycle : array -- The features of ‘X‘ between

periodicities given by low and high.

trend : array -- The trend in the data with the cycles removed.

7.2 MATLAB

Time series filters in MATLAB are less centralized, but here are a few sources.

The Hodrick-Prescott filter is included in the Econometrics Toolbox. The function

is hpfilter.

hpfilter(S) uses a Hodrick-Prescott filter and a default

smoothing parameter of 1600 to separate the columns of S into trend

and cyclical components. S is an m-by-n matrix with m samples from

n time series. A plot displays each time series together with its

trend (the time series with the cyclic component removed).
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hpfilter(S,smoothing) applies the smoothing parameter smoothing

to the columns of S. If smoothing is a scalar, hpfilter applies it

to all columns. If S has n columns and smoothing is a conformable

vector (n-by-1 or 1-by-n), hpfilter applies the vector components

of smoothing to the corresponding columns of S.

If the smoothing parameter is 0, no smoothing takes place. As the

smoothing parameter increases in value, the smoothed series becomes

more linear. A smoothing parameter of Inf produces a linear trend

component.

T = hpfilter(...) returns the trend components of the columns of S

in T, without plotting.

[T,C] = hpfilter(...) returns the cyclical components of the

columns of S in C, without plotting.

The Baxter-King filter may be downloaded from the Federal Reserve Bank of At-

lanta. The url is http://www.frbatlanta.org/documents/cqer/researchcq/bpf/bpassm.txt.

function [fX,AA] = bpass(X,pl,pu,root,drift,ifilt,nfix,thet)

MATLAB COMMAND FOR DEFAULT FILTER: fX = bpass(X,pl,pu) Required

Inputs: X - matrix of data (T x variables) with variables

in columns pl - minimum period of oscillation of desired

component pu - maximum period of oscillation of desired component

(2<=pl<pu<infinity). Output: fX - matrix (T x nvars) containing

filtered data

The Christiano-Fitzgerald filter may be downloaded from the Federal Reserve

Bank of Cleveland. The url is http://clevelandfed.org/research/models/bandpass/bpassm.txt.
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function [fX,AA] = bpass(X,pl,pu,root,drift,ifilt,nfix,thet)

MATLAB COMMAND FOR DEFAULT FILTER: fX = bpass(X,pl,pu)

Required Inputs:

X - matrix of data (T x variables) with variables in columns

pl - minimum period of oscillation of desired component

pu - maximum period of oscillation of desired component

(2<=pl<pu<infinity).

Output:

fX - matrix (T x nvars) containing filtered data
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Exercises

Homework 1

Spectral Density

Prove that the spectral density of X + Y is given by:

SX(ω) + SY (ω) + 2Re(SXY (ω))

Homework 2

Spectral Density Estimators

Find and plot the (non-smoothed) spectral density estimates for the following

quarterly US time series: GDP, consumption, investment, and CPI.

Homework 3

HP Filter

Use the HP filter to filter the time series from Exercise 2 taking λ = 1600. Find

and plot the spectral density estimates for both the trend and cyclical parts of the

filtered time series.

Homework 4

Filter Effects on Data

Filter the data series from Exercise 2 with the first difference, HP(λ = 1600),

and BP(6,32,K = 8) filters. Report the following moments for each data series and

for each filter: mean, standard deviation, first autocorrelation, and correlation with

GDP. Also plot the filtered time series comparing the bandpass filter with the first

difference filter and the bandpass filter with the HP filter. Comment on what you

find.
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Homework 5

Recall the minimization function for an HP filter is

min
gt
{

T∑
t=1

(yt − gt)2 + λ
T∑
t=2

[(gt+1 − gt)− (gt − gt−1)]2} (7.1)

(a) Prove that as λ→∞, the filtered series gt is linear (gt = g0 + βt for some β)

(b) Let 0 < λ < ∞. What are the first order conditions for 3.1 for t = 1, 2 and

the general case k?

(c) Using the results from (b), write a python script that finds the trended series of

US investment data, GDPIC96 (available from FRED). Use the matrix equation Y =

Λτ , with Λ containing the coefficients for λ from (b). The (m,n)th entry corresponds

to the time period m, and the row is corresponds to the nth first order condition

(d) Plot the actual data, the filtered data, and the stationary series.

Homework 6

Using the HP filter and the GDPIC96 data from exercise 1, complete the following

table for the cyclical series, c. The parameter ρ denotes the autocorrelation coefficient.

λ = 1000 λ = 1600 λ = 1800 λ = 16000
mean(c)
var(c)
ρ(c)

Homework 7

Use the following filters on the log of the SP500 data series (FRED) to extract the

stationary cyclical component. Report the moments listed in the table for the sta-

tionary component. Use quarterly-averages for observations. Do not truncate the

Band-Pass series as you normally would (see exercise 4).
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Differencing(yt − yt−1) OLS(quadratic) HP(λ = 1600) Band-Pass(6,32)
mean(c)
var(c)
ρ(c)

Homework 8

Repeat excercise 3, but trancate the detrended series by removing the first/last 5% of

observations before finding the moments. Which series are affected the most/least?

Differencing(yt − yt−1) OLS(quadratic) HP(λ = 1600) Band-Pass(6,32)
mean(c)
var(c)
ρ(c)
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