
Applied Mathematics

and

Computing

Volume I

2

List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i

ii List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 11

Algorithms: QR
Decomposition
(Householder)

Lesson Objective: Use orthogonal transformations to perform QR decomposi-
tion.

Orthogonal transformations
Recall that a matrix Q is unitary if Q⇤Q = I or for real matrices, QTQ = I
(since the conjugate of a real number is itself). We like unitary transformations
because they’re very numerically stable. The number (A) = kAk

��A�1
�� is called

the condition number of A. We’ll discuss condition number more in Lab ??; for
now, all you need to know is that if (A) is small, then problems involving A are
less susceptible to numerical errors. For induced matrix norms (which include most
of the matrix norms we would ever care about), it holds that kQk = 1 when Q is
unitary. The inequality kABk  kAk kBk also holds for these norms. It follows that
(A) = kAk

��A�1
�� �

��AA�1
�� = kIk = 1. Note that if Q is unitary, Q�1 = Q⇤ and

Q⇤ is also unitary, so (Q) = kQk kQ⇤k = 1. This means that orthogonal matrices
have the smallest possible condition number, which is great!

Any unitary matrix Q can be described as a reflection, a rotation, or some
combination of the two. If det(Q) = 1, then Q is a rotation; if det(Q) = �1, then
Q is the composition of a reflection and a rotation. Let’s explore these two types of
unitary transformations and some of their applications. We will focus on the real
case to simplify matters.

Householder reflections
A Householder reflection is a linear transformation P : Rn ! Rn that reflects a
vector x about a hyperplane. See figure 11.1. Recall that a hyperplane can be
defined by a unit vector v which is orthogonal to the hyperplane. As shown in the
figure, x�hv, xiv is the projection of x onto the hyperplane defined by v. (You should

77

78 Lab 11. Canonical Transformations and the QR Decomposition

Figure 11.1: Householder reflector

verify this geometrically.) However, to reflect across the hyperplane, we must move
twice as far; that is, Px = x�2hv, xiv. This can be written Px = x�2v(v⇤x), so P
has matrix representation P = I � 2vv⇤. Note that P ⇤P = I; thus P is orthogonal.

Householder triangularization

Consider the problem of computing the QR decomposition of a matrix A. You’ve
already learned the Gram-Schmidt and the Modified Gram-Schmidt algorithms for
this problem. The QR decomposition can also be computed using Householder tri-
angularization. Gram-Schmidt and Modified Gram-Schmidt orthogonalize A by a
series of triangular transformations. Conversely, the Householder method triangu-
larizes A by a series of orthogonal transformations.

Let’s demonstrate this method on a 4⇥3 matrix A. First we find a orthogonal
transformation Q1 that maps the first column of A into the range of e1 (where e1
is the vector where the first element is one and the remander of the elements are
zeros).

79

0

BB@

⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

1

CCAQ1�!

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

1

CCA

Let A2 be the boxed submatrix of A. Now find an orthogonal transformation Q2

that maps the first column of A2 into the range of e2.

0

@
⇤ ⇤
⇤ ⇤
⇤ ⇤

1

AQ2�!

0

@
⇤ ⇤
0 ⇤
0 ⇤

1

A

Similarly,

✓
⇤
⇤

◆
Q3�!

✓
⇤
0

◆
. (Technically Q2 and Q3 act on the whole matrix and not

just on the submatrices, so that Qi : Rn ! Rn for all i. Q2 leaves the first row
alone, and Q3 leaves the first two rows alone.) Then Q3Q2Q1A =

Q3Q2Q1

0

BB@

⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

1

CCA = Q3Q2

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

1

CCA = Q3

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 0 ⇤
0 0 ⇤

1

CCA =

0

BB@

⇤ ⇤ ⇤
0 ⇤ ⇤
0 0 ⇤
0 0 0

1

CCA

We’ve accomplished our goal, which was to triangularize A using orthogonal
transformations. But now, how do we find the Qi that do what we want? Using
Householder reflections. (Surprise!)

For example, to find Q1, we choose the right hyperplane to reflect x into the
range of e1. It turns out there are two hyperplanes that will work, as shown in figure
11.2. (In the complex case, there are infinitely many such hyperplanes.) Between
the two, the one that reflects x further will be more numerically stable. This is
the hyperplane perpendicular to v = sign(x1) kxk2 e1 + x. The whole process is
summarized in Algorithm 11.0.1.

Algorithm 11.0.1: Householder triangularization(A)

m,n size(A)
for k 1 to n� 1

do

8
>>>>>><

>>>>>>:

x = Ak:m,k

vk = sign(x1) kxk2 e1 + x
vk = vk/ kvkk2
Pk = eye(m,m)
Pk[k : m, k : m] = Pk[k : m, k : m]� 2vkvTk
A = sp.dot(Pk, A);

This algorithm returns upper triangular R. You can find Q s.t. QR = A by
multiplying the Pk together appropriately.

80 Lab 11. Canonical Transformations and the QR Decomposition

Figure 11.2: two reflectors

Problem 1 Write a script using Householder reflections to find the QR decompo-
sition of a matrix A.

Stability of the Householder QR algorithm

Try the following in Python.

In [1]: import scipy as sp

In [2]: import numpy.linalg as la

In [3]: import my_householder

In [4]: Q,X = la.qr(sp.rand (50 ,50)) #create a random orthogonal

matrix:

In [5]: R = sp.triu(sp.rand (50 ,50)) # create a random upper

triangular matrix

In [6]: A = sp.dot(Q,R) #Q and R are the exact QR decomposition of A

use your Householder QR script to estimate Q and R:

In [7]: Q1,R1 = my_householder.qr(A)

#now check the relative errors of Q1 and R1

In [8]: la.norm(Q1-Q)/la.norm(Q)

Out [8]: 0.282842955725

81

In [9]: la.norm(R1-R)/la.norm(R)

Out [9]: 0.0428922016647

This is terrible! Python works in 16 decimal points of precision. But Q1 and R1 are
only accurate to 0 and 1 decimal points, respectively. We’ve lost 16 decimal points
of precision!

Don’t lose hope. Check how close the product Q1R1 is to A.

In [10]: A1 = sp.dot(Q1,R1)

In [11]: la.norm(A1-A)/la.norm(A)

Out [11]: 9.73996046986e-16

We’ve now recovered 15 digits of accuracy. The errors in Q1 and R1 were somehow
“correlated,” so that they canceled out in the product. The errors in Q1 and R1

are called forward errors. The error in A1 is the backward error. The Householder
QR algorithm is a backward stable algorithm.

Householder QR factorization is more numerically stable than Gram-Schmidt
or even Modified Gram-Schmidt (MGS). However, MGS is still useful for some
types of iterative methods, because it finds the orthogonal basis one vector at a
time instead of all at once (for example see Lab 15).

Upper Hessenberg Form

An upper Hessenberg matrix is a square matrix with zeros below the first subdi-
agonal. Every n ⇥ n matrix A can be written A = QTHQ where Q is orthogonal
and H is an upper Hessenberg matrix, called the Hessenberg form of A. Note the
similarity of this decomposition to the Schur decomposition in Lab 35.

The Hessenberg decomposition can be computed using Householder reflec-
tions, in a process very similar to Householder triangularization. Let’s demonstrate
this process on a 5⇥5 matrix A. Note that A = QTHQ is equivalent to QAQT = H;
thus our strategy is to multiply A on the right and left by a series of orthogonal
matrices until it is in Hessenberg form. If we try the same Q1 as in the first step of
the Householder algorithm, then with Q1A we introduce zeros in the first column of
A. However, since we now have to multiply Q1A on the left by QT

1 , all those zeros
are destroyed, as demonstrated below. (Although this process may seem futile now,
it actually does tend to decrease the size of the subdiagonal entries. If we repeat it
over and over again, the subdiagonal entries will often converge to zero. That’s the
idea behind the QR algorithm in Lab 15.)

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA
Q1·�!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA
·QT

1��!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA

A Q1A Q1AQT
1

Instead, let’s try starting with a di↵erent Q1 that leaves the first row alone and
reflects the rest of the rows into the range of e2. This means that QT

1 leaves the

82 Lab 11. Canonical Transformations and the QR Decomposition

first column alone.
0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA
Q1·�!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA
·QT

1��!

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤

1

CCCCA

A Q1A Q1AQT
1

We now iterate through the matrix until we obtain

Q3Q2Q1AQT
1 Q

T
2 Q

T
3 =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤
0 0 ⇤ ⇤ ⇤
0 0 0 ⇤ ⇤

1

CCCCA

Problem 2 Write a script that transfers an input matrix to upper Hessenberg
form. (Hint: You only need to modify your code code from problem 1 slightly.) We
will use this technique in the eigenvalue lab later.

