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Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.
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Lab 15

Algorithms: Eigenvalue
Solvers

Lesson Objective: Implement the QR algorithm for finding eigenvalues.

Eigenvalues are hard to find
Finding the eigenvalues of n ⇥ n matrix A means solving the following equation,
where x is a nonzero vector and � is a scalar.

Ax = �x

Ax� �x = 0

(A� �I)x = 0 (15.1)

Since x is nonzero, (15.1) means A � �I must be singular. Thus det(A � �I) = 0.
This determinant is often notated det(A��I) = p(�) and is called the characteristic
polynomial of A. The roots of the characteristic polynomial are the eigenvalues of
A.

If A is n ⇥ n, the degree of p(�) = n. Finding the roots is easy for small n,
but it becomes di�cult or impossible as n increases. Abel’s Theorem outlines the
problem.

Theorem 15.1. Abel’s Impossibility Theorem: There is no general algebraic
solution for solving a polynomial equation of degree n > 4.

Therefore, there is no method that will exactly find the eigenvalues of an
arbitrary matrix. This is a significant result. In practice it means that we often
rely on iterative methods, which converge to the eigenvalues.
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The QR algorithm
There are many such iterative methods for finding eigenvalues. We will explore
one of the simplest: the QR algorithm. The following recurrence describes the QR
Algorithm in its most basic form.

A0 = A, Ak = QkRk, Ak+1 = RkQk

where Qk, Rk is the QR decomposition of Ak. Yes, it’s as easy as it looks. All
this algorithm does at each step is find the QR decomposition of Ak and multiply
Qk and Rk together again but in the opposite order. How does this simple algorithm
find the eigenvalues of A?

Ak+1 ⇠ Ak (where ⇠ denotes matrix similarity). Then An ⇠ A for all n.
This statement shows that An has the same eigenvalues as A. Preservation of
eigenvalues is the first important feature that makes the algorithm work. The other
important feature is that each iteration of the algorithm e↵ectively transfers some
of the“mass” from the lower to the upper triangle. Under very general conditions,
An will converge to a matrix of the form

S =

0

BBBB@

S1 ⇤ · · · ⇤

0 S2
. . .

...
...

. . .
. . . ⇤

0 · · · 0 Sm

1

CCCCA
(15.2)

where Si is either a 1⇥ 1 or a 2⇥ 2 matrix. For most matrices A, all the Si will be
1 ⇥ 1, so S will be an upper triangular matrix. In this case, S is called the Schur
form of A. The eigenvalues of A are on the main diagonal of S.

The only case where S is not upper triangular is when A is a real but not
symmetric matrix. In this case, though A is real, it may have complex eigenvalues.
These eigenvalues occur in complex conjugate pairs. Each of these pairs corresponds
to a 2 ⇥ 2 block in S, where the eigenvalues of the 2 ⇥ 2 block are the complex
conjugate pair of eigenvalues of A. In this case, S is called the real Schur form of
A.

Hessenberg preconditioning

Recall from Lab ?? that an upper Hessenberg matrix looks like

0

BBBBB@

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
0 ⇤ ⇤ · · · ⇤
...

. . .
. . .

...
0 · · · 0 ⇤ ⇤

1

CCCCCA

and that every matrix is similar to an upper Hessenberg matrix. Hessenberg re-
duction also preserves eigenvalues. It is a good idea to reduce to Hessenberg form
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before continuing with the QR algorithm. You’ll converge to the Schur form faster
this way, since Hessenberg matrices are already close to upper triangular.

Problem 1 Code the QR algorithm. Have your function accept an n⇥n matrix A
and a number of iterations, and return all the eigenvalues of A. Note that you will
need to find the eigenvalues of the 2⇥2 Si directly, if there are any. Since your own
implementations of QR decomposition and Hessenberg reduction may not handle
complex matrices, you should use the ones in scipy.linalg.

Problem 2 Test your implementation with random matrices. Try real, complex,
symmetric, and Hermitian matrices. Compare your output to the output from the
eigenvalue solver. How many iterations are necessary? How large can A be?

The QR algorithm is not the only iterative method used to find eigenval-
ues. Arnoldi iteration is similar to the QR algorithm but exploits sparsity. Other
methods include the Jacobi method and the Rayleigh quotient method.

It is important to remember that eigenvalue solvers can be wrong, particularly
for matrices that are ill-conditioned.



102 Lab 15. Eigenvalue Solvers


