
Applied Mathematics

and

Computing

Volume I



2



List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i



ii List of Contributors



Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/


Lab 16

Applications: Image
Compression (SVD)

Lesson Objective: Explore the SVD as a method of image compression

The singular value decomposition is very useful. In this lab, we are going to
explore how the SVD can be used to compress image data. Recall that the SVD is a
decomposition of an m⇥n matrix A of rank r into the product A = U⌃V H , where
U and V are unitary matrices having dimensions m ⇥ m and n ⇥ n, respectively,
and ⌃ is an m⇥ n diagonal matrix

⌃ = diag(�1,�2, . . . ,�r, 0, . . . , 0)

where �1 � �2 � . . . � �r > 0 are the singular values of A. Upon closer inspection,
we can write

U =
�
U1 U2

�
, ⌃ =

✓
⌃r 0
0 0

◆
, V =

�
V1 V2

�
,

where U1 and V1 have dimensions m ⇥ r and n ⇥ r respectively and ⌃r is the
r ⇥ r diagonal matrix of (nonzero) singular values. Multiplying this out yields the
reduced form of the SVD

A =
�
U1 U2

�✓⌃r 0
0 0

◆✓
V H
1

V H
2

◆
= U1⌃rV

H
1

Low rank data storage

If the rank of a given matrix is significantly smaller than its dimensions, the reduced
form of the SVD o↵ers a way to store A with less memory. Without the SVD, an
m ⇥ n matrix requires storing m ⇤ n values. By decomposing the original matrix
into the SVD reduced form, U1, ⌃r and V1 together require (m ⇤ r) + r + (n ⇤ r)
values. Thus if r is much smaller than both m and n, we can obtain considerable
e�ciency. For example, suppose m = 100, n = 200 and r = 20. Then the original

103



104 Lab 16. SVD

matrix would require storing 20, 000 values whereas the reduces form of the SVD
only requires storing 6020 values.

Low rank approximation

The reduced form of the SVD also provides a way to approximate a matrix with
another one of lower rank. This idea is used in many areas of applied mathemat-
ics including signal processing, statistics, semantic indexing (search engines), and
control theory. If we are given a matrix A of rank r, we can find an approximate
matrix bA of rank s < r by taking the SVD of A and setting all of its singular values
after �s to zero, that is,

⌃ bA = �1,�2, . . . ,�s,�s+1 = 0, . . . ,�r = 0

and then multiplying the matrix back together again. The more singular values we
keep, the closer our approximation is to A. The number of singular values we decide
to preserve depends on how close of an approximation we need and what our size
requirements are for U1, ⌃ bA, and V1. Try plotting the the singular values. We have
plotted the singular values to the image below. Matrix rank is on the x-axis and the
eigenvalues are the y-axis. Note that SVD orders the singluar values from greatest
to least. The greatest eigenvalues contribute most to the image while the smallest
eigenvalues hardly contribute anything to the final approximation. By looking at
the graph we can have a rough idea of how many singular values we need to preserve
to have a good approximation of A. The matrix rank of the image below is 670.
However, as the plot shows, we could easily approximate the image using only the
first half of the singular values.



105

: import scipy as sp

: import numpy.linalg as nla

: A = sp.array

([[1 ,1 ,3 ,4] ,[5 ,4 ,3 ,7] ,[9 ,10 ,10 ,12] ,[13 ,14 ,15 ,16] ,[17 ,18 ,19 ,20]])

: nla.matrix_rank(A)

: U,s,Vt = nla.svd(A)

: S = sp.diag(s)

: Ahat = sp.dot(sp.dot(U[:,0:3], S[0:3 ,0:3]) , Vt[0:3 ,:])

: nla.matrix_rank(Ahat)

: nla.norm(A)-nla.norm(Ahat)

Note that bA is “close” to the original matrix A, but that its rank is 3 instead
of 4.

Application to Imaging

Enter the following into IPython (note that any image you might have will work):

: import matplotlib.pyplot as plt

: X = sp.misc.imread(’fingerprint.png’)[:,:,0]. astype(float)

: X.nbytes #number of bytes needed to store X

: sp.misc.imshow(X)

Computing the SVD of your image is simple. Remember to make the singluar values
a diagonal matrix before multiplying.

: U,s,Vt = la.svd(X)

: S = sp.diag(s)

In the next code block, n repsents the desired rank of the output.

: n=50

: u1, s1, vt1 = U[:,0:n], S[0:n,0:n], Vt[0:n,:]

: Xhat = sp.dot(sp.dot(u1 , s1), vt1)

: (u1.nbytes+sp.diag(s1).nbytes+vt1.nbytes) - X.nbytes #should be

negative



106 Lab 16. SVD

: sp.misc.imshow(Xhat)

Problem 1 A law enforcement agency has been needing to e�ciently store over
50,000 fingerprints. They have decided to use an SVD based compression algorithm.
Your job is to try several parameters for the SVD algorithm and recommend those
parameters that retain the highest quality but compress the most. There should be
no smearing or blocking in reconstructed final image and fingerprint detail must be
retained (otherwise the fingerprint is worthless). As part of your recommendation,
calculate how much memory would be needed on average to store each compressed
fingerprint. Expand your results to say how much space could be saved if the entire
database of fingerprints were compressed using your algorithm.


