
Applied Mathematics

and

Computing

Volume I



2



List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i



ii List of Contributors



Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.
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Lab 17

Algorithms: Numerical
Derivatives

Lesson Objective: Understand and implement finite di↵erence approximations
of the derivative. This lab focuses on functions from R ! R, while a later lab
focuses on the multidimensional case.

The derivative of a function at a point is formally defined as

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
(17.1)

In most real world applications we will be solving problems using computers.
How does a computer calculate a limit? In short it can’t. Computers can only
approximate functions at specific points, and the notion of a limit graces infinity in
a way that a computer never can.

So how can we use a computer to find the derivative of a function, particularly
when we can’t di↵erentiate the function by hand? We use methods known as finite
di↵erence methods. For example suppose that in equation 17.1, instead of taking a
limit we just pick a particularly small value for h. Then we have

f 0(x) ⇡ f(x+ h)� f(x)

h
This is known as the first order forward di↵erence approximation of the deriva-

tive.
How do we know the quality of this approximation? We can use Taylor’s

formula to find

f(x0 + h) = f(x0) + hf 0(x0) + h2/2f 00(⇠), ⇠ 2 (x0, x0 + h)

Which can be also expressed as

f 0(x0) =
f(x0 + h)� f(x)

h
+

h

2
f 00(⇠) =

f(x0 + h)� f(x)

h
+O(h)
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Derivative Accuracy -3 -2 -1 0 1 2 3
2 -1/2 0 1/2

1 4 1/12 -2/3 0 2/3 -1/12
6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60
2 1 -2 1

2 4 -1/12 4/3 -5/2 4/3 -1/12
6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90

Table 17.1: Centered Di↵erence Coe�cients

Derivative Accuracy 0 1 2 3 4
1 -1 1

1 2 -3/2 2 -1/2
3 -11/6 3 -3/2 1/3
1 1 -2 1

2 2 2 -5 4 -1
3 35/12 -26/3 19/2 -14/3 11/12

Table 17.2: Forward Di↵erence Coe�cients

Here we use the big-O notation to denote that the errors are bounded by some
constant multiplied by h.

We can use Taylor expansions to find approximations that have di↵erent big-O
error bounds, up to any polynomial of arbitrary degree. The following tables o↵er
the coe�cients for forward, and centered di↵erence schemes.

These tables can be used by simply summing the function evaluations (the
number at the top represents how many times h is added to x), and then dividing
by hn, where n is the degree of the derivative.

So, for example, the centered di↵erence estimate of the second derivative that
is O(h4) is

f 00(x) ⇡ �1/12(f(x� 2h) + f(x+ 2h)) + 4/3(f(x� h) + f(x+ h))� 5/2f(x)

h2

Or, the forward di↵erence estimate for the first derivative that is O(h2) is

f 0(x) ⇡ �3/2f(x) + 2f(x+ h)� 1/2f(x+ 2h)

h

It should be noted that we can convert a forward di↵erence estimate to a
backwards di↵erence estimate by using �h. So the backwards di↵erence estimate
for the first derivative that is O(h2) is

f 0(x) ⇡ 3/2f(x)� 2f(x� h) + 1/2f(x� 2h)

h
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There are two important observations that you should make about these ta-
bles. First, in order to get higher order approximations we need to evaluate the
function at more points. This should not be surprising. Second, you should no-
tice that centered di↵erence formulas require less function evaluations to get higher
order approximations. However, in certain applications it is not possible to use
centered di↵erence formulas, so the backwards and forwards formulas are still very
applicable.

One important aspect of this method is selecting an appropriate h. The nat-
ural temptation is to pick a very very small value. However, this is not always
advisable. Note the values in table 17.3, which approximates the derivative of e(x)
at x = 1:

h Error = |f 0(1)� f 0
app(1)|

1e-1 4.5e-3
1e-3 4.5305e-7
1e-7 5.8587e-11
1e-10 6.7274e-7

Table 17.3: Error in numerical derivative, using double precision floating point
arithmetic

As you can see, the error actually increases as h becomes very small. Why
is this? Division by small numbers causes errors in floating point arithmetic. So,
be aware that usually the optimal h is of moderately small size. However, in the
framework of double floating point arithmetic, this is usually less of a concern.

As a matter of reference, calculating numerical derivatives is an unstable op-
eration. An unstable operation, informally, is one where errors are magnified by
the operation. This usually is not an issue, but it’s important to know that taking
derivatives can amplify errors.

Problem 1 Write a function that accepts as inputs: a derivative (first or second),
a degree of accuracy (n), a type of di↵erence (forward, backward or centered), a
function to be di↵erentiated, and a vector of points to di↵ereniate at. Also, allow
an optional input of error tolerance. Have the function estimate the derivative with
the inputed specifications. Have the function return a vector of the approximate
derivative and the number of total function evaluations. Try to minimize the total
number of necessary function evaluations. You can have the function output an
error if the specified order of derivative or degree were not provided in Table 17.1
or 17.2.

We note that higher order approximations of the derivative can be derived
using the Taylor series and Lagrange polynomials, but generally higher-order ap-
proximations are not practically useful as they can often be ill-conditioned.
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Problem 2 Test the convergence properties claimed in Tables 17.1 and 17.2.
Specifically, empirically calculate the order of convergence of a O(h2) centered dif-
ference and a O(h3) forward di↵erence by calculating the derivative of the sine
function at x = 1. How does it compare to the order of convergence expected?


