
Applied Mathematics

and

Computing

Volume I



2



List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i



ii List of Contributors



Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/


Lab 19

Algorithms: Multivariate
Finite Di↵erence Schemes

Lesson Objective: Understand how to compute numerically the Jacobian and
Hessian of a function.

The Jacobian is our generalization of the derivative in many dimensions. We
can think of it, intuitively, as a tangent plane at a point. The Jacobian is of
critical importance in a variety of areas, and we will use it in lab 23 to find zeros of
multivariate functions.

Formally, the Jacobian of a function f : Rn ! Rm is an m ⇥ n matrix. It is
defined by the formula:

Ji,j =
@fi
@xj

We can use finite di↵erence approximations to find partial derivatives in the
natural manner:

@f

@xi
(x) ⇡ f(x+ hei)� f(x)

h

where ei is a unit vector in the ith coordinate (the direction xi). Higher order ap-
proximations and centered and backwards di↵erences follow by naturally extending
this definition.

Problem 1 Write a function Jacobian(func,inputs,h,o) that accepts a function han-
dle, inputs to the function, step size h, and option o. Based on the option have the
function output the Jacobian using either a centered, forward or backward di↵er-
ence.

Test your function on the following f : R2 ! R2:

f(x1, x2) =

✓
ex1sin(x2) + x3

2

3x2 � cos(x1)

◆

117



118 Lab 19. Multivariate Numerical Derivatives

Compare your Jacobian function against the analytically computed derivative
on the square [�1, 1]⇥ [�1, 1] using ten thousand grid points (100 per side). Which
method is faster? What is the maximum error of your function? Make sure to test
the di↵erent options of your function to maximize performance (including values
for h, and di↵erent types of schemes).

Given a function from Rn ! R sometimes the mixed partial derivatives are
useful. In particular the mixed partials will be useful when we study optimization
in Volume 2. This information is contained in the Hessian matrix, which is defined
as

Hi,j =
@2f

@xi@xj

We can use the following formula to approximate mixed partial derivatives

@

2
f

@xi@xj
=

f(x+ (ei + ej)h)� f(x+ (ei � ej)h)� f(x+ (ej � ei)h) + f(x� (ei + ej)h)

4h

2

Problem 2 Write a Python function that numerically calculates the Hessian of a
given function. Test it on the following function

f(x, y) = (1� x)2 + 100(y � x2)2

This function is known as the Rosenbrock Banana function, or Rosenbrock’s Valley.
It is a common test function for optimization algorithms because it is non-convex
and the global minimum is hard to find from certain starting points. A graph is
shown in figure 19.1. Compare the output of your function with the analytic solution
on the region [�2, 2]⇥ [0, 2], using ten thousand points. What is the maximum error
of your function?



119

Figure 19.1: The Rosenbrock Banana Function, a common test function in opti-
mization algorithms



120 Lab 19. Multivariate Numerical Derivatives


