Applied Mathematics

and

Computing

Volume |







List of Contributors

J. Humpherys

Brigham Young University
J. Webb

Brigham Young University
R. Murray

Brigham Young University
J. West

University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitzeff
Brigham Young University



List of Contributors




Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

(©This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit
http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

(OMOM


https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 23

Application: Newton’s
Method

Lesson Objective: Understand Newton’s Method

One important technique in technical computing is Newton’s method. The
goal of Newton’s method is to find 2* such that f(z*) = 0. This method is espe-
cially important in optimization, where our goal is to find minima and maxima of
functions. Newton’s method is an iterative method (much like eigenvalue finders:
remember how those provably have to be iterative?). Newton’s method, in one
dimension, is defined as follows:

Tpn+1 = Tn — f/(fE )
n

Essentially Newton’s method approximates a function by its tangent line, and
then uses the zero of the tangent line as the next guess for z,,.

Newton’s method is powerful because of the speed of convergence. In many
cases Newton’s method converges to the actual root quadratically, meaning that
the error term is squared at every iteration. This fast convergence makes it a very
powerful algorithm.

Newton’s method does suffer from the flaw that its convergence is dependent
upon an initial guess. If the initial guess is not sufficiently close the convergence can
be much slower, or may never occur. There are even certain pathological functions
for which newton’s method will never converge. However, these functions are very
rare, and as a rule Newton’s method converges very quickly.

Problem 1 Write a Newton’s method function that runs whether or not the user
inputs a derivative function. If the user gives a derivative function, use that. Other-
wise estimate the derivative numerically within the Newton’s method function. In
python this can be done by defining the derivative function as a keyword argument.

151



152 Lab 23. Newton's Method

-2 L
0.5 1 15 2

Figure 23.1: An illustration of how one iteration of Newton’s method works

Your function definition will look something like this def new_newton(f, x0, df=None,
t01=0.001)
Compare the performance of Newton’s method when you input the derivative
and when you don’t. How well does each converge? Which runs faster? Try the
following functions:

o cos(x)

o sin(1/z) * z2

o (sin(z)/x) —x

Problem 2 Test your newton’s method function on z!/3. Use random starting

points around zero. What do you see? Prove that for any non-zero starting point
that newton’s method will diverge.

Problem 3 A basin of attraction can be loosely defined as a set that will eventually
converge to a specific root. Pick random points on the interval [—2,2] as starting



153

points and apply newton’s method to the function 22 — 2z +1/2. Display the basins
of attraction for this particular function. What do you observe?

Problem 4 Extend your Newton’s method even further so that it will work on
systems of equations. Suppose that F' : R™ — R". The relevant equation is

Tiv1 =z — JLF(x;)

Note that you should not calculate the inverse Jacobian. sp.solve(4,b) gives you
the solution z to the equation Az = b. Use this fact to calculate J~'F from J and
F. You should be able to make this function work whether or not the user inputs
a Jacobian. This also means that you will have to implement your own jacobian
function.



154 Lab 23. Newton's Method




