
Applied Mathematics

and

Computing

Volume I

2

List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i

ii List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 3

Essentials: NumPy

Why Arrays?

Problem 1 Let’s begin with a simple demonstration of why arrays are important
for numerical computation. Why use arrays when Python already has decently
e�cient list object? In this demonstration, we will try squaring a matrix. The
matrix will be represented as a two dimensional list (i.e. a list of lists).

Write a function that will accept two matrices (two dimensional list), A and
B, and return AB following the rules of matrix multiplication.

k = 10

a = [range(i, i+k) for i in range(0, k**2, k)]

Time how long your function takes to square matrices for increasing values of k.
Now import NumPy and create a NumPy array, b as shown below. We demon-

strate how to square NumPy arrays as matrices below. b*b does not square the array,
but rather multiplies b with itself element-wise. To get matrix multiplication for
NumPy arrays, you must use np.dot

import numpy as np

b = np.array([range(i, i+k) for i in range(0, k**2, k)])

np.dot(b, b)

Time how long NumPy takes to square arrays for increasing sizes of k.
What do you notice about the time needed to square a two dimensional list

vs. a two dimensional NumPy array?

NumPy
NumPy is a fundamental package for scientific computing with Python. It provides
an e�cient n-dimensional array object for fast computations. This lab will focus on

19

20 Lab 3. NumPy

how to use these powerful objects. NumPy is commonly imported as shown below.

: import numpy as np

Before beginning this lab, it will be useful to understand certain concepts and terms
used to describe NumPy arrays.

N-Dimensions

One, two, and three dimensional arrays are easy to visualize. But how do we
visualize a four, ten, or fifteen dimensional array? NumPy arrays are best thought
of as arrays within arrays. A one dimensional array consists of only elements. A two
dimensional array is really just an array containing arrays which contain elements.
Extending this metaphor, a three dimensional array is an array of arrays of arrays.
Can you guess what a five dimensional array is? Let’s define a three dimensional
array.

: arr = np.random.randint (50, size=(5, 4, 3))

Arrays have several attributes. We use shape and size to describe the how big
an array is. Shape tells how how many dimensions an array has and how big each
dimension is. Size gives the total number of elements in the array.

: arr.shape

(5, 4, 3)

: arr.size

60

If we want to know how much memory an array takes to store, we can use
arr.nbytes. The number of bytes is dependent on the data type (dtype) of the array.
The data types that NumPy uses are di↵erent from Python data types. An integer
in NumPy is not the same as an integer Python. Remembering this is vital. NumPy
uses machine data types to speed up calculations. However, these datatypes are sus-
ceptible to a problem called overflow. A 64 bit integer has enough bits to represent
integers between �9, 223, 372, 036, 854, 775, 808 and 9, 223, 372, 036, 854, 775, 807. If
we have an array with �9, 223, 372, 036, 854, 775, 808 and we decide to subtract 1,
the integer wraps around and becomes 9, 223, 372, 036, 854, 775, 807!

: arr.dtype

dtype(’int64’)

: arr.nbytes

480

Each element of the array has a unique address that describes it location.
Indexing always starts at 0. Also, like Python lists, negative indices are valid and
count from the tail of the array. We will discuss indexing in detail later in this lab.

: arr[0, 0, 0] # returns the first element of arr

: arr[-1, -1, -1] #returns the last element of arr

21

Creating Arrays
NumPy has several methods for creating and initializing arrays. When creating an
array, we can optionally specify the data type that is stored in the array. NumPy
arrays only store elements of the same data type, however, that data type can be
any arbitrary object. The array order dictates how the array is laid out in memory.
There is C order and Fortran order. C ordered arrays are also known as row-major
arrays. This means that the fastest changing index correspond to the rows of the
array. Fortran ordered arrays are column-major. Let’s look at a few of the ways we
can create arrays in NumPy.

• np.array: Makes an array from a Python list or tuple.

• np.empty: Allocates an array of a specific size without initializing the elements.

• np.ones: Allocates and array and initializes each element to 1.

• np.zeros: Allocates and array and initializes each element to 0.

• np.identity: Allocates a 2D array array with the main diagonal initialized to
1 and zeros everywhere else.

Indexing Arrays

Array Views and Copies

Before we begin accessing arrays, it is important to understand that NumPy has
two ways of returning an array. Slice operations always return a view and fancy
indexing always returns a copy. Understand that even though they may look the
same, views and copies completely di↵erent.

Views are special arrays that reference other arrays. Changing elements in a
view changes the array it references. Below we demonstrate the behavior of a view.
Notice that c looks like a copy of b, but it is, in fact, not at all.

: b = np.arange (25).reshape (5,5); b

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: c = b[:]; c #looks like c is a copy of b

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: id(c) == id(b) #We have unique objects

False

: c[2] = 500; c

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[15, 16, 17, 18, 19],

22 Lab 3. NumPy

[20, 21, 22, 23, 24]])

: b #changing c also changed b!

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

The reason that changing the array c also changed the array b is because c and
b share the same memory, even though they are di↵erent Python objects. Views
reduce the overhead of making copies of arrays and are useful when we want to
change certain parts of the array.

A copy of an array is a separate array that is allocated separately.

: b = np.arange (25).reshape(5, 5); b

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: c = b.copy()

: id(c) == id(b) #we still have separate objects

False

: c[2] = 500

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[500, 500, 500, 500, 500],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: b

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

Changing the data in a copy of an array, doesn’t change the data in the original
array. The two arrays address di↵erent locations in memory.

Slices

Each element of an array has a unique address that we can use to retrieve that
element. Indexing NumPy arrays is syntatically the same as indexing Python lists.
We will demonstrate on a random 2D array. Remember that slicing arrays always
return views of the array. In this case, the indexing object is a Python tuple.

: arr = np.arange (25).reshape (5,5); arr

array ([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

: arr[0, 0] #access the first element

0

: arr[-1, -1] #access the last element

23

24

: arr[0] #access the first row

array([0, 1, 2, 3, 4])

We can access ranges of elements using Python lists. NumPy, though, has a much
faster, more concise way to select ranges using the arr[start:stop:step] notation.

: arr [::2] #get every other row. equivalent to arr[range (0, len(arr),

2)]

array ([[0, 1, 2, 3, 4],

[10, 11, 12, 13, 14],

[20, 21, 22, 23, 24]])

: arr[::2, ::2] #get every other row and every other column

array ([[0, 2, 4],

[10, 12, 14],

[20, 22, 24]])

: arr[3:, 3:] #extract lower right 2x2 subarray

array ([[18, 19],

[23, 24]])

: arr[:, 1] #extract second column

array([1, 6, 11, 16, 21])

Fancy Indexing

When the indexing object is an object other than a tuple, NumPy behaves slightly
di↵erent. One di↵erence is that fancy indexes always return a copy of an array in-
stead of a view. There are two types of fancy indexes: boolean and integer. Boolean
indexing returns an array of True or False values depending on some evaluating con-
dition.

: bmask = (arr > 15) & (arr < 23)

array ([[False , False , False , False , False],

[False , False , False , False , False],

[False , False , False , False , False],

[False , True , True , True , True],

[True , True , True , False , False]], dtype=bool)

: arr[bmask]

array ([16, 17, 18, 19, 20, 21, 22])

: arr[(arr > 15) & (arr < 23)] #this is the shortened form

array ([16, 17, 18, 19, 20, 21, 22])

: arr[~bmask] #invert the mask

: arr[(0, 2, 4), (0, 2, 4)] #grab every other element of diagonal

array([0, 12, 24])

: arr[range(0, 5, 2), range(0, 5, 2)] #same as above , but with ranges

array([0, 12, 24])

: arr[:, [0, -1]] #grab first and last column

array ([[0, 4],

[5, 9],

[10, 14],

[15, 19],

[20, 24]])

24 Lab 3. NumPy

Array Broadcasting
Array broadcasting allows NumPy to e↵ectively work with arrays with sizes that
don’t match exactly. There are four basic rules to determine the behavior of broad-
casted arrays

1. All input arrays of lesser dimension than the input array with largest dimen-
sion have 1’s prepended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the
input sizes in that dimension.

3. An input can be used in the calculation if its size in a particular dimension
either matches the output size in that dimension, or has a value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that
dimension will be used for all calculations along that dimension.

To broadcast arrays, at least one of the following must be true.

1. All input arrays have exactly the same shape.

2. All input arrays are of the same dimension and the length of corresponding
dimensions match or is 1.

3. All input arrays of fewer dimension can have 1 prepended to their shapes to
satisfy the second criteria.

Problem 2 Explore array broadcasting. Create example for each of the three cases
where arrays are broadcasted.

Saving Arrays
Sometimes it is desirable to save an array to a file to be used for later. NumPy
provides several easy to use methods for saving and loading array data to files.

np.save(file, arr) Save an array to a binary file
np.savez(file, *arrs) Save multiple arrays to a binary file
np.savetxt(file, arr) Save an array to a text file

np.load(file) Load and return an array from a binary file
np.loadtxt(file) Load and return an array from text file

Let’s practice saving an array to a file and loading it again. Note that when
saving an array, NumPy automatically appends the extension .npy if it does not
already exist.

25

a = np.arange (30)

np.save(’test_arr ’, a)

new_a = np.load(’test_arr.npy’)

np.savez(’test_multi ’, a=a, new_a=new_a)

arrs = np.load(’test_multi.npz’)

The variable arrs points to a dictionary object with the keys a and new_a which
reference the arrays that have been saved.

