Applied Mathematics

and

Computing

Volume |

List of Contributors

J. Humpherys

Brigham Young University
J. Webb

Brigham Young University
R. Murray

Brigham Young University
J. West

University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitzeff
Brigham Young University

List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

(©This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit
http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

(OMOM

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 4

Algorithms: Python
Essentials (Arrays)

Lesson Objective: This lesson explains basic matrixz operations in Python.

Matrices form the core data structure of NumPy and SciPy. Thus, we will
explore the ways one can manipulate matrices in Python.

Before we begin, we make a few important comments about how Python works
with matrices. First, matrices can be represented in NumPy in two ways. NumPy
has a matrix data type and an array data type. Matrix objects are a special case
of the array object. The main differences are that the matrix object allows for
a clearer, more MATLAB style syntax. In these labs, we will use arrays because
most functions in NumPy accept arrays as input. We can easily convert arrays to
matrices using the .asmatrix() method. As such, all future references to matrices
in the context of NumPy will be mentioned as arrays (a matrix being a 2D array).
When using arrays it is important to be sure that the dimensions are compatible.

We also note that arrays are by default are accessed row by row. This is called
row-major. This is the opposite of MATLAB, which is column-major. However,
NumPy arrays can converted to column-major arrays.

Finally, with all code examples in these labs we assume that you have already
imported the SciPy library (type import scipy as sp when you first open ipython).

To begin, we will work with vectors. We will demonstrate a variety of methods
to create vectors. You should follow these demonstrations on your own computer
and experiment as you go. Vectors are at least one dimensional arrays. There are
several ways to create vectors in Python. Try the following in IPython:

: a = sp.array([1,2,3,4]); a
array ([1, 2, 3, 41)

Notice the square brackets and the commas. The square brackets denote a
list in Python with values separated by commas. This is a row vector. The ; a is
responsible for printing the current value of a. How do we make a column vector?
We simply pass the array() method a list of lists containing a single value each.

29

30 Lab 4. Python Essentials (Arrays)

: b = sp.array([[3]1,[4],[6]1,[111); b
array ([[3],

(41,

el,

[111)

We can also use the hstack() and vstack() methods (meaning horizontal stack
and vertical stack).

al = sp.hstack([5,6,7,8])
: bl = sp.vstack([9,0,1,2])

We combine vectors together by placing two or more of equal dimension inside
square brackets. The technical term for this is concatenation. Remember that the
dimensions of each array must match. Try the following.

c = sp.concatenate((b,bl), axis=1); c

There are several methods to automate vector creation. For example, we can
build a vector of consecutive values using the arange () method.

sp.arange (5)

Notice how the values start at zero and increment up to, but not including 5.
This is standard Python behaviour. The arange() method also allows us to specifiy
step size This syntax also allows us to specify step size:

sp.arange (1,3,step=0.5)

We can similarly use negative step sizes (note that the starting must be greater
than the endpoint).

sp.arange (3,1, step=-.5)

A related function is called 1inspace(). It allows us to specify two endpoints
and the number of equidistant values we want between the two. Unlike arange(),
linspace() will always include both endpoints.

sp.linspace(1,2,5)

The plot() function uses two vectors to create a graph, the first vector rep-
resenting z-values and the second representing the corresponding y-values. To use
plot (), we need to import the Matplotlib library. As an example we plot a line of
slope two using the following commands (See figure 1.1):

import matplotlib.pyplot as plt
: x = sp.linspace(-2,2,20)
: plt.plot(x,2*x)
: plt.show()

By typing plt.plot? into the command line we can find the exact syntax and
options for the plot () function. For example we can type plot(x,2*x, ’r*’) to plot
red star data points instead of a line.

31

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Figure 4.1: A simple graph

Problem 1 Plot a line with slope three with black diamond data points. Plot for
the domain = € [—5, 5].

Creating is done by concatenating vectors in the correct manner. For example:

sp.array ([[1, 2, 31,[4, 5, 61,[7, 8, 911)

Problem 2 Create a matrix showing the times table from 1 to 6. Do not enter each
number manually. Instead, create a variable x = sp.arange(1,7) and let the rows of
the matrix be multiples of x.

Another technique for creating matrices is using outer products. An outer
product is the method of multiplying two vectors to get a matrix. For example, if
we want to make a matrix that is two repeated rows of the vector 1:5 we can do
the following:

sp.vstack([1,1])*sp.arange (1,6)

32 Lab 4. Python Essentials (Arrays)

Here we are multiplying a 2 x 1 vector and a 1 x 5 vector, which yields a 2 x 5
matrix. The two rows are identical since the entries of the first vector are all ones.

Problem 3 Create the same matrix from problem 2, using outer products this
time. This implementation, although perhaps more difficult to conceptualize, makes
for much more concise code.

You can also combine matrices in the same way as vectors, as long as the
dimensions match correctly, i.e. the same number of rows or the same number of
columns. Try the following:

: D
: E

sp.hstack ((b, c))
sp.concatenate ([D.T, sp.vander(sp.arange(1,5))])

Here we used the vander() method, which accepts a vector of length n and
creates an n X n matrix. The columns of this matrix are powers of the input vector
(evaluated point-wise). More information about the vander() method by typing
sp.vander?.

To briefly review, vectors are built using the square brackets, with semi-colons
to build columns and spaces to build rows. Matrices are built in exactly the same
way, using vectors or matrices instead of individual numbers.

Often while writing code it is necessary to know information about the prop-
erties of an array. The matrix properties can be accessed as follows.

E.ndim #dimension of E

E.nbytes #size of E in memory (bytes)

E.size #total area of E (the product of the dimenstions)
E.shape #size of E in each dimension

For this next problem we will need to read an array from a file. SciPy provides
a method for loading data from text files. We are going to load bucky.csv as an array.

: bucky = sp.loadtxt("bucky.csv", delimiter=",")

This array represents the connections between vertices of a truncated isoca-
hedron. This soccer ball like shape is found in certain types of carbon molecules
known as fullerenes (specifically Cgg, shown in shaped

Problem 4 The bucky matrix represents the connections between the vertices of
a truncated isocahedron. This structure matches both the structure of a standard
soccer ball, and also of certain types of carbon molecules known as fullerenes (specif-
ically Cgo, shown in ??). It is also related to the structure of the geodesic dome.
Find the size of this matrix.

33

Figure 4.2: The structure of the Cgy molecule.

To access information in an array, you put the index you wish to access inside
square brackets after the variable name. This works for both variable assignment
and retrieval. Remember that indices start at zero in SciPy.

rand_mat = sp.random.randint (10, size=(3,5))
rand_mat [0,0]
rand_mat [2,2] = 37

The colon operator is used to retrieve an entire row or column from an array.
For example, enter the following to get the third column of an array:

rand_mat [:,2]

We similarly retrieve the first row:

rand_mat [0, :]

Note that each retrieved row or column is returned as a single dimensional
array (meaning that row or column loses it meaning). If we want to retain the
retrieved row as a column or row we can write instead rand_mat[:,[2]].

It is also possible to retrieve multiple columns or rows at once. For example,
we retrieve the second and fourth columns of an array by entering:

rand_mat [:,[1,3]]

We list the entries of an array as a single dimensional array using the flatten()
method.

rand_mat.flatten() #flattens along the rows (C like arrays)
rand_mat. flatten(’F’) #flattens along the columns (Fortran like
arrays)

The following line tells Python to retrieve the entries in the second row, from
the second column to the end:

rand_mat [1,1:]

34 Lab 4. Python Essentials (Arrays)

Deleting a row or column can be done by using the delete() method. The last
argument is the axis along which to delete. If the deletion axis is not specified, then
the array will be flattened before being returned. Here we remove the column at
index 1.

sp.delete(rand_mat, 1, 1)

Problem 5 Try to assign a vector of incorrect size to a piece of a matrix. What
happens? Also, try to concatenate two matrices that don’t have matching dimen-
sions. What error message do you get? It is important to learn how to read error
messages for troubleshooting purposes.

Numerical operations are by default done element-wise on arrays. A common
mistake is to use = for matrix multiplication. This simply multiplies each element
by a constant. To perform matrix multiplication, SciPy provides the dot () method.
To take the transpose of an array, use the .T property. Observe the behavior of the
array operations.

: b
c
: b+c
array ([[12],
[21,
[311D

sp.vstack ([8,0,2])
sp.vstack ([4,2,1])

: b-c
array ([[4],
[-21,
[11D
: A = sp.array([0,4,5,4,0,2,9,4,6]) .reshape((3,3))
: Axb #b is a column wector, so each row <s multiplied by a constant
array ([[0, 32, 40],
[o, o, oI,
[18, 8, 1211)
: A*xb.T #b.T is a row vector, so each column multiplied by a constant
array ([[0, 0, 10],
[32, o0, 4],
(72, o0, 1211)
sp.dot (A,Db)
array ([[10],
(361,
[8411)
sp.power (A,2) #this is A~2
array ([[0, 16, 25],
[16, o0, 41,
[81, 16, 3611)

: A/2 #notice that type is perserved. This is integer division
array ([[0, 2, 2],

[2, 0, 1],

[4, 2, 311D

: A/2. #divide by a float yields an array of floats.

35

array ([[0. , 2. , 2.5],
[2., 0., 1. 1,
[4.5, 2., 3.1D

The majority of elementary functions, such as sin, cos, exp, etc. act element-
wise on arrays as well. In fact, for any operation in SciPy, expect it to act element-
wise unless otherwise noted. For example:

sp.sin(sp.arange (4) *xsp.pi/4)
array ([0. , 0.70710678, 1. , 0.707106781)

Also, as a matter of reference, raising a value to a power is done using *x. This
is a convention from older programming languages that has carried over.

There are a variety of functions that let us summarize information about a
given array. For example, the sun() function returns the sum along a given axis
of an array. When an axis is not specified, all elements in the array are summed
together.

: B = sp.arange (9) .reshape ((3,3))
sp.sum(B) #all entries are summed together
36
sp.sum(B, axis=0) #sum each column
array ([9, 12, 15])
sp.sum (B, axis=1) #sum each Tow
array ([3, 12, 21])

Some other functions that summarize information about the entries of an
array are contained in the Table 1.1. Note that each of these functions reduces
the size of the matrix (which makes sense, since they are summarizing functions).
These functions work across columns by default, although most of them allow you
to specify an axis to work across.

These functions can be incredibly useful. For example, suppose that we want
to estimate the derivative of sin(x?). A simple approximation for a derivative is

flz+h) - f(z)
h

Presumably this approximation is good when h is small. We use the diff()
function to perform this approximation using the following code:

f'(z) ~

: h = .001
: x = sp.arange(0,sp.pi,h)
approx = sp.diff (sp.sin(x**2))/h

We have just approximated the derivative of sin 22 at several thousand points
between 0 and 7. The approximated derivatives are stored in the array approx. Now
let’s compute the actual derivative at each point using the formula:

f'(x) = 2zcos(z?)

actual = 2*sp.cos(x*x*2)*x;

36 Lab 4. Python Essentials (Arrays)
Function Description Usage
max Returns maximum entries | A.max(axis)
min Returns mimimum entries | A.min(axis)
mean Returns the mean A.mean(axis)

scipy.median

scipy.linalg.norm

Returns the median

zero entries
Returns the norm

sp.median(A, axis)

std Returns the standard de- | A.std(axis)
viation

scipy.diff Returns the differences | sp.diff(A, axis)
between entries

prod Returns the product of en- | A.prod(axis)
tries

any Returns 1 if there are non- | A.any(axis)
zero entries, zero other-
wise

all Returns 1 if all entries are | A.all(axis)
non-zero, zero otherwise

nonzero Returns indices of non- | A.nonzero(axis)

norm(A, order)

Table 4.1: Various summarizing functions

Plot the approximated derivative and the actual derivative on two different

plots. They should look almost identical.

from matplotlib import pyplot as plt

: plt.

figure (1) #create an empty figure
: plt.subplot(211) #create an empty subplot in figure
: plt.plot(x, approx)
: plt.subplot (212) #create another subplot in same figure
: plt.plot(x, actual)
: plt.show()

Problem 6 Now use the max() command to find the maximum difference between
the estimated derivative and the actual derivative (the dimensions will not match
exactly (why?); fix this by removing the last entry from one of the vectors). Try
plotting the approximation, actual deriviatives, and the error on the same graph.
What does it look like?

Problem 7 The command sp.rand() returns an array of a specified shape with val-
ues “randomly” selected from a uniform distribution between zero and one. Create

37

a vector with ten thousand entries using this command. The theoretical values for
the mean(u) and standard deviation(o) of a uniformly distributed random variable
between a and b are

a+b

These values are calculated using moment-generating functions. Use the mean() and
std() methods on the vector you created earlier. How do these compare to the
theoretical values?

The canonical problem in linear algebra is solving the equation Az = b for x,
where A is an n X n matrix and b is a 1 x n vector. One method for solving this
equation is by calculating the matrix inverse of A (A~!) and multiplying A=1b. To
find the inverse of an array, use the linalg.inv() method. For example, we create
a random system Ax = b and solve it using the inv() method (you may check the
calculations by hand):

: A = sp.array([1,5,2,3,5,1,4,7,2]) .reshape((3,3))
: b = sp.vstack([1, 3, 11./3])
from scipy import linalg as la
: sol = sp.dot(la.inv(A),b); sol
array ([[0.66666667],
[0.33333333],
[-0.6666666711])

Recall that a norm is a measurement on the size of a vector. For example, the
Euclidean norm measures the straight line distance from the origin to the “end” of

a vector.
lz|| = /22 + ... + 22

If the norm of the difference of two vectors is close to zero, then they are good
approximations of each other. The 1linalg.norm() function calculates the euclidean
norm of an input vector, and thus we use it to verify that our approximation of the
derivative is close to the actual derivative:

la.norm(b-sp.dot (A,sol))
5.5288660751834285e-15

However, computing the inverse of a large matrix is difficult. Not only that,
but not all matrices have inverses. There is a much more efficient and general way
to solve Az = b in SciPy. This method is similar to the backslash method found in
MATLAB. It is the 1inalg.solve() method. Compare the results obtained with the
linalg.solve() method to those of the 1inalg.inv() method.

38 Lab 4. Python Essentials (Arrays)

s0l2 = la.solve(A,b); sol2
array ([[0.66666667],
[0.33333333],
[-0.66666667]1])
la.norm(sol2-so0l)
4.5775667985222375e-16

We mentioned that 1linalg.solve() is more efficient than using the function
inv, meaning it returns a result faster. Create the following script to compare the
efficiency of each method:

import scipy as sp
from scipy import linalg as 1la
from timer import timer

def invMethod (A, b):
return sp.dot(la.inv(A),b)

def solveMethod (A, b):
return la.solve(A,b)

n = 300
sp.rand(n,n)
b = sp.rand(n,1)

=
]

with timer (repeats=3, loops=10) as t:
t.time (invMethod ,A,b)
t.time (solveMethod ,A,Db)
t.printTimes ()

Now run the script. You should notice a significant difference in execution
time (you may need to scale n appropriately). Are you surprised that invMethod()
is significantly slower than solveMethod? Specifically, SciPy uses the the LU factor-
ization and backwards substitution to solve the linear system without any matrix
inversions.

The 1linalg.solve() method can also be used to solve several systems at once.
For example:

¢ = sp.rand(n, 1)
la.solve(A, sp.c_[b,c]l) #sp.c_[] concatenates column vectors

You might now be asking why we would want to do this. We can answer this
by investigating the time it takes to solve two systems. Open a new script file and
write the following;:

import scipy as sp

from timer import timer
n = 3000

A = sp.rand(n,n)

b = sp.rand(n,1)

¢ = sp.rand(n,1)

def multSys(A, *col_vecs):
return la.solve(A, sp.hstack(col_vecs))

39

def singSys(A, *col_vecs):
return [la.solve(A, x) for x in col_vecs]

with timer (repeats=3, loops=100) as t:
t.time (multSys,A,b,c)
t.time (singSys,A,b,c)
t.printTimes ()

This script creates a random 3000 x 3000 matrix, and two random 3000 x 1
vectors (you can experiment with different sizes of matrices and vectors). It then
solves the two systems of equations twice, once using two backslash commands and
the other using only one. Remember that the semi-colons suppress the output in
the script.

Now execute this script. You should notice that the first method takes about
twice as long as the second method. This is because linalg.solve() uses the LU
decomposition, and in the second method it only has to execute this factorization
once. This highlights the importance of understanding the algorithms that python
uses: we can solve problems much faster if we understand what python is doing.

A number of other important operators that you will need are found in Table
1.2.

Method Description Usage
linalg.inv() Matrix inverse la.inv(A)
rank() Rank sp.rank(A)
linalg.norm() Norm (default: 2-norm) la.norm(A, ord)
linalg.expm() Matrix exponential la.expm(A)
linalg.det() Determinant la.det(A)
linalg.eig() Eigenvalue decomposition | la.eig(A)
linalg.svd() Singular value decomposi- | la.svd(A)

tion
linalg.lu() LU decomposition la.Ju(A)
linalg.qr() QR factorization la.qr(A)
linalg.cholesky() | Cholesky factorization la.cholesky(A)

Table 4.2: Useful matrix operations

Problem 8 The 1inalg.1stsq() method can be also used to solve overdetermined
systems. This is sometimes also known as the least squares method. The formula
is (ATA)~*AT % b. Create a script to verify numerically that the 1inalg.1stsq()
method and the least squares formula yield the same result. Hint: Use the 1inalg.
norm() function to verify equality, as we did with linalg.inv() and linalg.solve().

