
Applied Mathematics

and

Computing

Volume I

2

List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i

ii List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 5

Algorithms: Matrix
Operations and
Algorithmic Complexity

Lesson Objective: This section explains how to create specific types of large
matrices. It also introduces the concept of temporal complexity. Finally, it explores
SciPy’s special methods for working with sparse matrices.

Temporal Complexity
One of the most important questions in scientific computing is: How long will
this operation take? The concept of temporal complexity attempts to answer this
question by determining how much time a function needs to operate on a given size
of input. For example suppose calculating the inverse of a matrix of size n requires
the following number of calculations.

f(n) =
3n3

2
+ 75n2 + 250n+ 30

What is the most important part of this expression? When our input gets very
large the only relevant term in this equation is n3. For this reason we say that
f(n) 2 O(n3), or more commonly that f(n) is O(n3) (spoken “Big O of n cubed”
or “Order of n cubed”). This notation is borrowed from analysis. This notation
captures the salient behavior of our temporal complexity, or more precisely the
growth rate we can expect of the execution time of our algorithm. We will discuss
this concept later, but this is a simple introduction to the notion of complexity
and Big O. Spatial complexity is the amount of memory an algorithm uses, and is
defined similarly.

Advanced Matrix Tools
We now introduce a few di↵erent ways to build matrices. Two important methods
available for building matrices are zeros() and ones(). These commands allow us to

41

42 Lab 5. Matrices and Complexity

build matrices populated entirely with zeros or ones, respectively. For example, to
build a 3-vector filled with zeros we enter the following command:

: import scipy as sp

: sp.zeros ((3 ,1))

array ([[0.],

[0.],

[0.]])

To find additional options for these methods, you can use the help system.
One important use of the zeros() method is to allow us to pre-allocate memory.

Pre-allocation is simply the practice of reserving a chunk of memory for later use.
We can always add more space to a matrix using the methods we learned in lab 1,
but this requires many extra internal operations because of way arrays are stored
in memory. Thus, it is generally faster to allocate a matrix with its final size and
modify its values rather than building an array as you go.

Table 1.3 gives a few commands that allow us to build types of useful matrices.

Function Description Usage
eye() Identity matrix sp.eye(m, n)
zeros() Zero matrix sp.zeros((m, n))
ones() One matrix sp.ones((m, n))
diag() Building (or retrieving)

along a diagonal
linalg.toeplitz() Matrix with constant di-

agonals
la.toeplitz()

linalg.triu() Upper triangular
linalg.tril() Lower triangular
rand Psuedo-random matrix,

uniformily distributed
randn Psuedo-random matrix,

normally distributed
random.randint() Psuedo-random matrix,

uniformily distributed
integers

sp.random.randint()

tile() Copy across a given di-
mension

sp.tile(A, reps)

Table 5.1: Special matrix creation commands

For example, suppose that we want to create a matrix with �2 on the diagonal,
and ones on the super and sub diagonal. We can do this by using the following
command:

: from scipy import linalg as la

: la.toeplitz ([-2,1,0])

array([[-2, 1, 0],

[1, -2, 1],

43

[0, 1, -2]])

This matrix is useful because it numerically approximates the second deriva-
tive of a function. We investigate some properties of this matrix in Problem 6 of
this lab, and explain more about this matrix later.

Problem 1 Use the diagflat() method to create the following matrices. All of these
matrices should be easily scaleable (ie only minor modification would be required
to change the size).

0

BBBB@

1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1

1

CCCCA

0

BBBB@

1 1/2 1/3 1/4 1/5
1/2 1 1/2 1/3 1/4
1/3 1/2 1 1/2 1/3
1/4 1/3 1/2 1 1/2
1/5 1/4 1/3 1/2 1

1

CCCCA

Problem 2 Create the matrices from Problem 1 using the methods linalg.toeplitz

() or linalg.triu(). Which method is easier? Now use whichever command is easiest
to create the matrix: 0

BBBB@

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

1

CCCCA

Sparse Matrices
In this section we discuss how sparse matrices are used and constructed. A sparse
matrix is a matrix that has few non-zero entries (where few is generally relative to
the number of entries in the matrix). SciPy has several di↵erent ways of storing
sparse matrices. Each way has it pros and cons (the reader is encouraged to read
the help for way).

Type the following into IPython.

: from scipy import sparse as spar

: A = sp.diagflat ([2 ,3 ,4])

: B = spar.csc_matrix(A)

: C = B.todense ()

Notice that the matrix A has only three non-zero entries, and so we can
consider it sparse. In memory, an array stores a bit of data (be it an integer, float,

44 Lab 5. Matrices and Complexity

Function Description
sparse.bsr() Compressed Block Sparse Row
sparse.coo() Coordinate
sparse.csc() Compressed Sparse Column
sparse.csr() Compress Sparse Row
sparse.dia() Sparse Diagonal
sparse.dok() Dictionary of Keys
sparse.lil() Linked List

Table 5.2: Sparse matrix representations in SciPy

or complex number) each entry, meaning that a 3 ⇥ 3 matrix requires a total 9
blocks of memory. However, if we leverage the sparsity of A we realize that we only
need to store 3 numbers. The sparse methods do exactly this: they store only the
non-zero entries and their locations in the matrix. No longer are we working with
array. SciPy has many methods for performing operations on sparse arrays. To
convert back to a dense matrix, we use the .todense() property of the sparse matrix.
We can also convert between the di↵erent types sparse arrays.

We remark that if you want to make a sparse diagonal matrix, the best way
to do it isn’t to use diagflat() followed by sparse, it’s actually better to use the
sparse.spdiags() method:

: spar.spdiags ([2,3,4],0,3,3)

This is because oftentimes when we are using sparse matrices we are dealing
with matrices that are too large to be handled e�ciently by python when represented
in full form.

Banded Matrices
A banded matrix is one whose only non-zero entries are diagonal strips. For exam-
ple, the matrix

A =

0

BB@

1 2 0 0
3 4 5 0
0 6 7 8
0 0 9 10

1

CCA

is banded because there are three nonzero diagonals. This particular type of banded
matrix is called a tri-diagonal matrix.

You can easily create banded matrices using the diagflat() method. For ex-
ample, the matrix A above can be created by entering

: sp.diagflat ([3,6,9],-1) + sp.diagflat ([1,4,7,10],0) + sp.diagflat

([2,5,8],1)

45

Often a better way to create a tri-diagonal is it use the spar.spdiags() method.
This is because many diagonal matrices are sparse. For example, we create the
same matrix in Python (while designating that it is sparse) using the command:

: Z = sp.array ([[3, 1, 0],[6, 4, 2],[9, 7, 5] ,[0 ,10 ,8]]).T

: spar.spdiags(Z,[-1,0,1],4,4)

For more information, check the documentation by typing spar.spdiags?. For
example we create a tri-diagonal array with uniformily distributed random entries.
This example also demonstartes the e�ciency of using sparse arrays.

: B = sp.rand (3 ,10000)

: A = spar.spdiags(B,range(-1,2) ,10000 ,10000)

: denseA = A.todense () #only do this step if you have _lots_ of

memory!

: A.data.nbytes

240000 #about 0.24 MB of memory

: denseA.nbytes

800000000 #about 762.9 MB of memory!

We can’t use the full command in this case because the computer will almost
certainly run out of memory (the matrix is 10,000⇥ 10,000). However, we can still
visualize this matrix using the plt.spy() command from matplotlib, which essentially
shows the location of non-zero entries in a matrix. The output of plt.spy(A) in this
case is shown in Figure 1.2:

Figure 5.1: The output of the spy command.

46 Lab 5. Matrices and Complexity

Using Sparse Matrices
Consider the linear system Ax = b, where A is a 100,000 ⇥ 100,000 tri-diagonal
matrix. To store a full matrix of that size in your computer, it would normally
require 10 billion double-precision floating-point numbers. Since it takes 8 bytes
to store a double, it would take roughly 80GB to store the full matrix. For most
desktop computers, that fact alone makes the system numerically prohibitive to
solve. The temporal complexity of the problem is even more problematic. Methods
for directly solving an arbitrary linear system are usually O(n3). As a result, even
if the computer could store an 80GB matrix in RAM, it would still take several
weeks to solve the system. However, since we don’t have computers with that much
available RAM, most of the matrix would have to be stored on the hard drive, so
the computation would probably take between 6 months to a year.

The point is that even the next generation of computers will struggle with
solving arbitrary linear systems of this size in a reasonable period of time. However,
if we take advantage of the sparse structure of the tri-diagonal matrix, we can solve
the linear system, even with a modest modern computer. This is because all of
those zeros don’t need to be stored and we don’t need to do as many operations to
row reduce the tri-diagonal system.

Let’s first compute the spatial complexity of the above system when considered
as a sparse matrix. There are three diagonals that have roughly 100,000 non-zero
entries. That’s 300,000 double-precision floating point numbers, which is about 2.4
MB (Less storage than your favorite song). As a result, it will easily fit into the
computer’s RAM. Furthermore, the temporal complexity for solving a tri-diagonal
matrix is O(n). Let’s see how long it takes to solve the system for random data:

: from scipy.sparse import linalg as sparla

: from timer import timer

: D = sp.rand(3, 100000)

: b = sp.rand(1, 100000)

: A = spar.spdiags(D,[-1 ,0 ,1] ,100000 ,100000)

: def solSys ():

....: return sparla.spsolve(A,b)

: with timer() as t:

....: t.time(solSys)

....: t.printTimes ()

Problem 3 Write a function that returns a full n ⇥ n tri-diagonal array with 2’s
along the diagonal and �1’s along the two sub-diagonals above and below the di-
agonal. Hint: Use the la.toeplitz() method. Note that this is the second derivative
matrix that we discussed at the beginning of this lab.

Problem 4 Write another function that builds the same array as above, but as a

47

sparse array. You must build this as a sparse matrix from the beginning. Hint: Use
the spar.spdiags() method.

Problem 5 Solve the linear system Ax = b where A is the n⇥n tri-diagonal array
from the above two problems and b is randomly generated. How high can you go
for each method? Make a table for several di↵erent values of n and the time it took
to solve for each run. What conclusions can you draw?

Problem 6 Using the sparse array above and the method la.eigs(), calculate the
smallest eigenvalue � of the array as the array’s size goes to infinity. What value
does �n2 approach? Hint: It’s the square of an important number. This is related
to operator theory: the second derivative operator has this eigenvalue in certain
cases.

Other Sparse Commands
One important method of sparse array objects is the nonzero() method, which is
related to the number of nonzero entries in an array. This number is important
because it is an indicator of the amount of time and space that is required to
operate on the sparse array. You should be aware that there is some overhead to
using and storing the sparse array data structure. Sparsely represented arrays are
very beneficial when the number of nonzero entries is relatively small compared to
the total number of entries. When the array has many nonzero entries, a sparse
representation becomes disadvantageous. To see this, create and execute a script
with the following code:

: A = sp.rand (600 ,600); B = spar.csc_matrix(A)

: def square(A): return sp.power(A, 2)

: with timer() as t:

....: t.time(square , A)

....: t.time(square , B)

Run the script and note the two di↵erent runtimes. Notice that it takes much
longer to square the sparse array. This is because the sparse array data structure is
optimized for arrays that are actually sparse. The array A is entirely nonzero. Thus,
you incur the overhead of the sparse array representation without any benefits since
there are no entries you are not required to store or compute. To summarize, only
use a sparse array when your array is in fact sparse. Using sparse arrays for mostly
nonzero arrays will negatively impact performance and memory requirements.

48 Lab 5. Matrices and Complexity

Just as with dense arrays, we can pre-allocate sparse arrays. Sometimes it is
necessary to create sparse matrices that do not have a nice banded pattern. We
initialize a sparse array just like any other array. The most e�cient sparse array for
pre-allocation is LIL. Once you are done constructing you sparse array and wish to
perform calculations, you should convert to a more e�cient sparse array (CSR or
CSC).

: Z = spar.lil_matrix ((400 ,300))

<400x300 sparse matrix of type ’<type ’numpy.float64 ’>’

with 0 stored elements in LInked List format >

: Z[1 ,34] = 23

: Z[23 ,32] = 56

: Z[2,:] = 13.2

This code snippet creates a 400 ⇥ 300 LIL sparse array. We can then work
with the sparse array as though it were a dense array. When the array is initialized
all of the entries are assumed to be zero.

