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Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.
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Lab 6

Applications: Markov
Chains I

Lesson Objective: This section teaches about two simple applications of Linear
Algebra. First it teaches about Markov Chains, which in this context represent
discrete random transitions. Second it teaches about Graph Theory, which can be
used to represent many physical problems.

Markov Chains
AMarkov Chain describe a particular type of random variable. This type of random
variable is characterized by the fact that all relevant information is related to its
current state. We can easily model this type of random variable using matrices. We
will start with a canonical example of a frog jumping from one lilypad to another.

Fredo the Frog hops around between the three lily pads A, B, and C. If he’s
on lily pad A and jumps, there is a 25% chance that he will land back on lily pad
A, a 25% chance that he will land on lily pad B, and a 50% chance that he will
land on lily pad C. In Figure ‘2.1, we have a transition diagram that reflects the
various probabilities from which Fredo will go from one lily pad to another.

We can convert our transition diagram into a transition matrix, where the
(i, j)-entry of the matrix corresponds to the probability that Fredo jumps from the
jth lily pad to the ith lily pad (where of course A is the first lily pad, B is the
second, and so on). In Fredo’s case, the transition matrix is

A =

0

@
1/4 1/2 1/2
1/4 1/6 1/2
1/2 1/3 0

1

A

Note that all of the columns add up to one. This is important.
If Fredo is on lily pad A, where will he be after two jumps? By multiplying

the matrix A by itself, we have (approximately)
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Figure 6.1: Transition diagram for Fredo the Frog

A2 =

0

@
0.4375 0.3750 0.3750
0.3542 0.3194 0.2083
0.2083 0.3056 0.4167

1

A

From this, we infer that there is a 43.75% chance he will still be on lily pad A
after two jumps. Note that he might have jumped from A to A to A, denoted
A ! A ! A, or he could have jumped to one of the other lily pads and then back
again, that is, either A ! B ! A or A ! C ! A. In addition, there is a 35.42%
chance he will be on lily pad B and a 20.83% chance that he will be on lily pad C.
Using Python, we can type in our transition matrix and see where Fredo will be
after 5, 10, 20 or 100 jumps.

#Remember , the 1.’s in the numerator force floating point division

: A = sp.array ([[1./4 ,1./2 ,1./2] ,[1./4 ,1./6 ,1./2] ,[1./2 ,1./3 ,0]])

: np.linalg.matrix_power(A,5)

: np.linalg.matrix_power(A,10)

: np.linalg.matrix_power(A,20)

: np.linalg.matrix_power(A,100)

Note that in the limit that the number of jumps goes to infinity, we get

A1 =

0

@
0.4 0.4 0.4
0.3 0.3 0.3
0.3 0.3 0.3

1

A

This means that after several jumps, the probability that we will find Fredo on a
given lily pad will have nothing to do with where he started initially.
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Markov Chains
We can generalize this notion beyond that of frogs and lily pads. Let the state of
our system be represented by a probability vector

x =

2

6664

x1

x2
...
xn

3

7775

where each entry represents the probability of being in that state. Note that each
entry is nonnegative and the sum of all the entries adds up to one. For example,
in the case of Fredo, if we know initially that he is on lily pad A, then we have the
state vector

x0 =

2

4
1
0
0

3

5

because we know for certainty (100%) that Fredo is in the first state. After one
jump, we have

x1 = Ax0 =

2

4
0.25
0.25
0.50

3

5

After two jumps, we have

x2 = Ax1 = A2x0 =

2

4
0.4375
0.3542
0.2083

3

5

After a large number of jumps (n >> 1), we have

xn = Axn�1 = · · · = Anx0 ⇡

2

4
0.4
0.3
0.3

3

5

Since all of the columns are the same for A1, then for any initial probability vector
x0, we get the same limiting output, or in other words, all initial vectors converge
to the same point, call it x1. Moreover, we have that

x1 = Ax1

This is called a stable fixed point. How can we check that a stable fixed point
exists? Hint: Think eigenvalues and eigenvectors.

Example
Consider the Markov chain given by

A =

0

@
0.5 0.3 0.4
0.2 0.2 0.3
0.3 0.5 0.3

1

A .



52 Lab 6. Markov Chains I

We show that it has a stable fixed point by checking that it has a single eigenvalue
� = 1. We do this via Python:

: A = sp.array ([[.5 ,.3 ,.4] ,[.2 ,.2 ,.3] ,[.3 ,.5 ,.3]])

: V = la.eig(A)[1]

Note that the entries in the � = 1 eigenvector do not generally add up to one.
Indeed, any multiple of an eigenvector is an eigenvector. So we need to multiply it
by the appropriate constant so that all of the entries add up to one.

: x = V[:,0]

: x = x/sp.sum(x);x

array([ 0.41836735 , 0.23469388 , 0.34693878])

We can check this answer by taking A to a high exponent, say A100.

Problem 1 Suppose a basketball player’s success at shooting free throws can be
described with the following Markov chain

A =

✓
.75 .50
.25 .50

◆

where the first state corresponds to success and the second state to failure.

1. If the player makes his first free throw, what is the probability that he also
makes his third one?

2. What is the player’s average free throw percentage?

Problem 2 Consider the Markov process given by the transition diagram in Figure
2 below:

1. Find the transition matrix.

2. If the Markov process is in state A, initially, find the probability that it is in
state B after 2 periods.

3. Find the stable fixed point if it exists.
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Figure 6.2: Transition diagram

Graph Theory

Graph theory is an important branch of mathematics and computer science.
It describes how objects are connected to one another. In a rigorous sense, a graph
is composed of two sets: a set of nodes and a set of edges that connect these nodes.

A graph is directed if connections are uni-directional, and undirected if they
are bi-directional. The above graphic shows an undirected graph. We can write a
matrix that describes this type of graph. We let each row of our matrix represent
our starting point and each column represent our destination. We put a 1 if there
is a path and a 0 if there is not. For the above graph we generate the following
matrix:

A =

0

BBBBBB@

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

1

CCCCCCA
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This matrix is called an adjacency matrix. Note that this matrix is symmetric,
since the graph is undirected.

What happens if we square an adjacency matrix? It turns out that raising an
adjacency matrix to the n power yields the number of paths of length n between
two vertices. For example by squaring the above matrix Python gives:

: np.linalg.matrix_power(A,2)

array ([[2, 1, 1, 1, 1, 0],

[1, 3, 0, 2, 1, 0],

[1, 0, 2, 0, 2, 1],

[1, 2, 0, 3, 0, 0],

[1, 1, 2, 0, 3, 1],

[0, 0, 1, 0, 1, 1]])

Now try to find the number of connections of length 6 from node 3 to itself.
This is simple to do in Python:

: np.linalg.matrix_power(A,6)

array ([[45, 54, 38, 45, 54, 16],

[54, 86, 29, 77, 51, 11],

[38, 29, 55, 15, 70, 27],

[45, 77, 15, 75, 31, 4],

[54, 51, 70, 31, 93, 34],

[16, 11, 27, 4, 34, 14]])

It turns out that there are 55 unique paths of length 6 from node 3 to itself. Imagine
trying to count all of those paths by hand! It would be very easy to count incorrectly.
However, this method makes it very simple to count paths without any mistakes.

Problem 3 Let the following matrix represent a directed graph

A =

0

BBBBBBBB@

0 0 1 0 1 0 1
1 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 0

1

CCCCCCCCA

The greatest number of paths of length five are from which node to each node?
From which node to which node is their no path of length seven?

The astute reader may ask now why this matters. It turns out that the
study of graphs and connectivity have many important applications. For example,
connections between web pages can be described as graphs. So can flights between
airports or friends on social networking sites. The same ideas are applied frequently
in computer chip design and in the preservation of endangered species. We will
explore one surprising application to chemistry.
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Remeber the bucky array we explored in chapter one? The graph that this
matrix represents is a graph for a geodesic dome, which has structure almost iden-
tical to certain types of carbon atoms. Understanding the graphs of certain types
of molecules allows scientists to better understand the structure of the molecule,
making identification and manipulation easier.

We will manipulate the matrix the bucky to simulate the types of analysis a
scientist could do on a complex carbon atom. For our purposes, each column and
row of the bucky matrix represents an atom in our molecule, and connections are
chemical bonds from one atom to another.

Problem 4 Find the number of connections between atoms in our molecule(the
command sp.count_nonzero may be useful). Then find the number of atoms that
are connected by paths of length two. Three? At what path length are all of the
atoms connected? A nifty way to visualize this is the plt.spy command. Read
the documentation for plt.spy and then use plt.spy to visualize how the graph is
connected at path length one, two, four and ten. Remember, to load ‘‘bucky.csv’’

into an array use the command bucky = sp.loadtxt ( "bucky.csv", delimiter = ",").


