
Applied Mathematics

and

Computing

Volume I

2

List of Contributors

J. Humpherys
Brigham Young University

J. Webb
Brigham Young University

R. Murray
Brigham Young University

J. West
University of Michigan

R. Grout
Brigham Young University

K. Finlinson
Brigham Young University

A. Zaitze↵
Brigham Young University

i

ii List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

iii

https://github.com/ayr0/numerical_computing
http://creativecommons.org/licenses/by/3.0/us/

Lab 7

Algorithms:
RREF/Elementary
Matrices

Lesson Objective: In this section we will use elementary matrices to find the
RREF and to find the LU decomposition.

In Linear algebra there are 3 elementary row operations: switching two rows,
multiplying a row by a constant, and adding a multiple of one row to another row.
We carry out each of these operations with a corresponding elementary matrix.
These matrices are easy to construct. Suppose A is an m ⇥ n matrix and you
want to perform one of the three elementary operations on A. You can do this be
constructing the m⇥m identity matrix, I, performing the elementary row operation
on I to obtain E and then multiplying EA. For example, consider the matrix

A =

0

@
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

1

A

If we want to swap the first two rows, we can left multiply the matrix A by:

E =

0

@
0 1 0
1 0 0
0 0 1

1

A ,

then

EA =

0

@
a21 a22 a23 a24
a11 a12 a13 a14
a31 a32 a33 a34

1

A .

E in this case is called a type I matrix.
Now let’s examine the next row operation. If we want to multiply, say, the

second row of A by the constant b, we can left multiply the matrix A by the following

57

58 Lab 7. RREF/Elementary Matrices

matrix:

Ẽ =

0

@
1 0 0
0 b 0
0 0 1

1

A .

Then

ẼA =

0

@
a11 a12 a13 a14
ba21 ba22 ba23 ba24
a31 a32 a33 a34

1

A .

Ẽ is called a type II matrix.
Now let’s examine the last row operation. If we want to multiply, say, the first

row of A by a constant c and add it to the second row, we can left multiply the
matrix A by the following matrix:

bE =

0

@
1 0 0
c 1 0
0 0 1

1

A .

Then

bEA =

0

@
a11 a12 a13 a14

ca11 + a21 ca12 + a22 ca13 + a23 ca14 + a24
a31 a32 a33 a34

1

A .

bE is called a type III matrix.
Below, the elementary matrices corresponding to each row operation is imple-

mented in Python.

1 from scipy import eye

2

def rowswap(n, j, k):

4 """ Swaps two rows

6 INPUTS: n -> matrix size

j, k -> the two rows to swap """

8 out = eye(n)

out[j,j]=0

10 out[k,k]=0

out[j,k]=1

12 out[k,j]=1

return out

14

def cmult(n, j, const):

16 """ Multiplies a row by a constant

18 INPUTS: n -> array size

j -> row

20 const -> constant """

out = eye(n)

22 out[j,j]= const

return out

24

def cmultadd(n, j, k, const):

26 """ Multiplies a row (k) by a constant and adds the result to

another row (j)"""

59

out = eye(n)

28 out[j,k] = const

return out

row opers.py

Programming Row Reduction
A fundamental problem in linear algebra is using matrix representations to solve
systems of linear equations. In this section, we do this by using elementary matrices
to reduce a matrix into “row echelon form” (REF), as opposed to “reduced row
echelon form” (RREF). We remark that to solve a linear system, it is actually
faster computationally to use REF and then finish with back-substitution, than it
is to use RREF. Consider the following matrix:

0

@
4 5 6 3
2 4 6 4
7 8 0 5

1

A

By iteratively left multiplying by elementary matrices, we can reduce as fol-
lows:

Remember that our functions returns the elementary array corresponding to
the desired row operation. Also note that setting the type of our initial array is
crucial.

: import scipy as sp

: import row_opers as op

: A = sp.array ([[4, 5, 6, 3],[2, 4, 6, 4],[7, 8, 0, 5]], dtype=’

float32 ’)

array ([[4., 5., 6., 3.],

[2., 4., 6., 4.],

[7., 8., 0., 5.]], dtype=float32)

: A1 = sp.dot(op.cmultadd (3,1,0,-A[1 ,0]/A[0 ,0]), A); A1

array ([[4. , 5. , 6. , 3.],

[0. , 1.5, 3. , 2.5],

[7. , 8. , 0. , 5.]])

: A2 = sp.dot(op.cmultadd (3,2,0,-A1[2 ,0]/A1[0 ,0]), A1); A2

array ([[4. , 5. , 6. , 3.],

[0. , 1.5 , 3. , 2.5],

[0. , -0.75, -10.5 , -0.25]])

: A3 = sp.dot(op.cmultadd (3,2,1,-A2[2 ,1]/A2[1 ,1]), A2); A3

array ([[4. , 5. , 6. , 3.],

[0. , 1.5, 3. , 2.5],

[0. , 0. , -9. , 1.]])

To complete REF we would need to divide each row by its leading coe�cient.
We can do that using Type II matrices. We leave it to you to carry this out.

60 Lab 7. RREF/Elementary Matrices

Problem 1 Write a Python function, which takes as input an n⇥(n+1) matrix (in
other words and augmented matrix) and performs the above naive row reduction to
REF using elementary matrices. (You do not need to worry about underdetermined
matrices or getting zeros on the main diagonal)

LU Decomposition
Again, consider the matrix A. By iteratively left multiplying by Type 3 elementary
matrices, we reduce as follows:

: E1 = op.cmultadd (3,1,0,-A[1 ,0]/A[0 ,0]); E1

array ([[1. , 0. , 0.],

[-0.5, 1. , 0.],

[0. , 0. , 1.]])

: B1 = sp.dot(E1, A)

array ([[4. , 5. , 6. , 3.],

[0. , 1.5, 3. , 2.5],

[7. , 8. , 0. , 5.]])

: E2 = op.cmultadd (3,2,0,-B1[2 ,0]/B1[0 ,0])

: B2 = sp.dot(E2, B1)

: E3 = op.cmultadd (3,2,1,-B2[2 ,1]/B2[1 ,1])

: U = sp.dot(E3, B2); U

array ([[4. , 5. , 6. , 3.],

[0. , 1.5, 3. , 2.5],

[0. , 0. , -9. , 1.]])

Note that we have reduced the above matrix into upper-triangular form, denoted
as U . Hence, we have

U = E3E2E1A.

Since the elementary matrices are invertible, we also have

(E3E2E1)
�1U = A.

This can be re-written as
E�1

1 E�1
2 E�1

3 U = A.

Then we define L to be
L = E�1

1 E�1
2 E�1

3 ,

which yields LU = A.

: from scipy import linalg as la

: I = lambda x: la.inv(x)

: L = sp.dot(sp.dot(I(E1), I(E2)), I(E3)); L

array ([[1. , 0. , 0.],

[0.5 , 1. , 0.],

[1.75, -0.5 , 1.]])

: sp.dot(L, U)

array ([[4., 5., 6., 3.],

[2., 4., 6., 4.],

[7., 8., 0., 5.]])

61

What makes LU decomposition so easy is that the inverses of elementary matrices
are elementary matrices. For example, the inverse of a Type 3 elementary matrix
is the same matrix with the opposite sign in the (j, k) entry. In the above problem,
we have: Note that the minus signs are gone. Doing it this way, we don’t have to
actually invert anything to compute L. This makes the computation much faster.

Why Should I Care?
The LU Decomposition isn’t very useful when doing matrix computation by hand.
It is, however, very important in scientific computation for the following reasons:

• If you want to solve the matrix equation Ax = b, for several di↵erent b0s,
you can replace A with L and U , giving LUx = b. Then solve the equations
Ly = b and Ux = y, using forward and backward substitution, respectively.
This is actually faster than solving them with row reduction.

• The LU decomposition allows quick computation of both inverses and deter-
minants.

• For very large matrices the LU decomposition is crucial. Indeed one can
perform the LU decomposition on a given matrixA without needing additional
space, that is, the program actually over-writes A with L and U . Note that
since the diagonal of L are all ones, they don’t need to be stored, and so
the upper diagonal (including the diagonal) is U and the lower diagonal (not
including the diagonal) is L.

Problem 2 Write a Python function which takes as input a random n⇥n matrix,
performs the LU decomposition and returns L and U . To verify that it works,
multiply L and U together and compare to A. Note: you should not use the inv

function when you do this. You should only use the elementary matrices that
we just created. Additionally, have your function count the number of operations
needed to perform the LU decomposition.

Problem 3 Write a Python function which uses the solution to Problem 2 to find
the determinant of A.

