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Preface

This lab manual is designed to accompany the textbook Foundations of Ap-
plied Mathematics by Dr. J. Humpherys.

c�This work is licensed under the Creative Commons Attribution 3.0 United
States License. You may copy, distribute, and display this copyrighted work only if
you give credit to Dr. J. Humpherys. All derivative works must include an attribu-
tion to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/ayr0/numerical_computing

as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.
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Lab 9

Algorithms: Modified
Gram-Schmidt (QR)

Lesson Objective: Understand how the QR algorithm works and write your own
implementation.

The QR decomposition is used to represent any matrix as the multiple of an
orthogonal matrix and an upper triangular matrix. This decomposition is useful in
computing least squares and is part of a common method for finding eigenvalues.

Review of Gram Schmidt

Theorem 9.1 (Gram-Schmidt Orthogonalization Process). Let {xi}ni=1 be
a basis for the inner product space V . Let

q1 =
x1

kx1k
,

and define q2,q3, . . . ,qn recursively by

qk+1 = xk+1 �
kX

j=1

hxk+1,qji
kqjk2

qj ,

the sum term is a projection of xk+1 onto the subspace Span(q1,q2, . . . ,qk).
Then the set {qi}ni=1 is an orthonormal basis for V .

For the above algorithm, let rjk = hxk,qji when j  k. Then

r11q1 = x1

rkkqk = xk � r1kq1 � r2kq2 � r3kq3 � . . .� rk�1,kqk�1, k = 2, . . . , n.
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This can be written as

x1 = r11q1

x2 = r12q1 + r22q2

... =
...

xn = r1nq1 + r2nq2 + . . .+ rnnqn,

or in matrix form as

0

BB@

...
...

...
x1 x2 · · · xn

...
...

...

1

CCA =

0

BB@

...
...

...
q1 q2 · · · qn

...
...

...

1

CCA

0

BBB@

r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn

1

CCCA
.

Hence if our original basis {xi}ni=1 correspond to column vectors of a matrix A, we
can likewise write the resulting orthonormal basis {qi}ni=1 as a matrix Q of column
vectors. Then we have that A = QR, where R is the above nonsingular upper-
triangular n⇥ n matrix. This is the QR Decomposition and is summarized by the
following theorem:

Theorem 9.2. Let A be an m⇥ n matrix of rank n. Then A can be factored into
a product QR, where Q is an m ⇥ n matrix with orthonormal columns and R is a
nonsingular n⇥ n upper triangular matrix.

There are three mode options available in SciPy’s implementation of QR De-
composition. We will be using the “economic” option.

: import scipy as sp

: from scipy import linalg as la

: A = sp.randn (4,3)

: Q, R = la.qr(A, mode=’economic ’)

: sp.dot(Q, R) == A there will be some False entries

: sp.dot(Q, R) - A

: sp.dot(Q.T, Q)

In order to interpret the results correctly, we need to understand that the
computer has limited precision (especially with floating point numbers). This is
why sp.dot(Q, R) is not exactly equal to A. But subtracting the two yields numbers
that are essentially zero. This shows that indeed the product of Q and R is A. Note
also that QTQ = I. This implies that the column vectors of Q are orthonormal
(why?).

Solving Least Squares Problems
For large or ill-conditioned problems, the QR decomposition provides a nice method
for computing least squares solutions of over-determined matrices. Consider the
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problem Ax = b. Recall that the least squares solution is bx = (ATA)�1AT b.
Alternatively, we write the linear system as

QRx = b.

We then multiply both sides by QT , yielding

Rx = QT b.

Then bx = R�1QT b.

Computational Remark
Numerically, the Gram Schmidt process can have problems due to finite precision
arithmetic. Specifically, due to rounding errors, the resulting basis may not be
orthonormal. To combat this, we actually carry out a slightly revised algorithm
called Modified Gram Schmidt. To do this, we compute q1 as before. We then
project it out of each of the remaining original vectors x2,x3, . . . ,xn via

xk := xk � hxk,q1iq1, k = 2, . . . , n.

Then we compute q2 to be the unit vector of x2, that is,

q2 =
x2

kx2k
.

We repeat by projecting out q2 from the remaining vectors x3,x4, . . . ,xn.

Problem 1 Write your own implementation of the QR decomposition. It should
accept as input a matrix A and computes its QR decomposition, returning the
matrices Q and R. Be sure to use the numerically stable Modified Gram Schmidt
algorithm.
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