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Perturbation Methods for DSGE Models

1 Introduction

In this section we will explore in more detail the perturbation methods ref-

erenced in section 5.4 of the DSGE chapter. We will only consider a second

order approximation of the policy function here, but approximations of yet

higher order follow the same basic approach. There are many alterations

of the standard perturbation method. Detailed discussions of perturbation

methods can be found in chapters 13 – 15 of Judd (1998), as well as in

Collard and Juillard (2001), Schmitt-Grohe and Uribe (2004), and Heer and

Maussner (2009).

As noted previously, assuming that the policy functions are linear can

be extremely useful in solving DSGE models. When second or higher order

properties of the characterizing equations of the are important to the ques-

tion being answered, however, linearization is undesirable. Linearization is

essentially a first order Taylor series approximation about the steady state, as

discussed in section 6 of the DSGE chapter. Such an approximation results

in certainty equivalence, or the phenomenon of unconditional expectations of
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the endogenous variables being equal to their non-stochastic steady state val-

ues. This occurs because in a linear approximation, only the first moments of

the shocks enter the linear equations. As these processes are assumed to be

mean zero, these moments wash out when expectations are taken. Thus, the

distribution of the shocks have no influence on the resultant policy equation

solutions.

Applications where this can be troublesome include asset pricing mod-

els and welfare analysis. In asset pricing models the riskiness of an asset is

directly related to the variance of the underlying shocks. Thus, failing to ac-

count for higher order characteristics of the model can invalidate the results.

In welfare analysis where the utility functions have high curvature, failing to

account for the second moment can similarly produce spurious results.

2 Pertubation Methods in General

To see how perturbation methods work consider the following simple ex-

ample. Suppose we have a condition on a potentially nonlinear bivariate

function:

F (x, u) = 0 (2.1)

Assume u is an exogenously given variable, and x will be choson to satisfy

(2.1). Denote the solution to this condition as x(u) and assume that the

value of x(u0) is known.

Taking the derivative of (2.1) with respect to u gives:

Fx{x(u), u}xu(u) + Fu{x(u), u} = 0 (2.2)
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If we evaluate this at u = u0 and solve for the first derivative of x(u), we

have:

xu(u0) = −Fu{x(u0), u0}
Fx{x(u0), u0}

(2.3)

Since x(u0) is known, as long as Fx{x(u0), u0} 6= 0 we can find the value for

the first derivative. The first-order (linear) Taylor-series approximation of

x(u) will be:

x(u) = x(u0) + xu(u0)(u− u0) (2.4)

To find the second-order terms we differentiate (2.2) again with respect

to u.

Fxx{x(u), u}xu(u)xu(u) + Fxu{x(u), u}xu(u)

Fx{x(u), u}xuu(u)

Fxu{x(u), u}xu(u)

Fuu{x(u), u} = 0

(2.5)

Again evaluating at u = u0 and solving this time for the second derivative of

x(u), we have:

xuu(u0) = −Fxx{x(u0), u0}[xu(uo)]2 + 2Fxu{x(u0), u0}xu(uo) + Fuu
Fx{x(u0), u0}

(2.6)

Hence, the second-order (quadratic) Taylor-series approximation of x(u) will

be:

x(u) = x(u0) + xu(u0)(u− u0) + 1
2
xuu(u0)(u− u0)2 (2.7)

Higher order terms can be obtained by successive differentiation of (2.5),

setting u = u0 and solving for the appropriate derivative. This will be a
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function of the various derivatives of F (x, u) and the lower-order derivatives

of x(u) obtained from previous iterations.

3 Pertubation Methods in Dynamic Systems

Recall our system of dynamic equations from the linearization chapter. We

can take natural logs or otherwise transfomr the equatuions to get:

Et{Γ(Xt+1, Xt, Xt−1, Zt+1, Zt)} = 0 (3.1)

We have already shown one method for obtaining a linear approximation

of the policy function. Our task in this section is to obtain the quadratic

terms from a second-order approximation of the same policy function. As

with the linearization discussion we will assume that there are no jump vari-

ables, though if some of the variables included in the list of endogenous state

variables are, in fact, jump variables, this is not a problem.

We must recall that the exogenous state variables evolve according to a

linear law of motion given in (3.2).

Z̃t = NZ̃t−1 + σΩεt; εt ∼ (0, InZ
) (3.2)

where σ is a scalar, and Ω is a matrix that determines correlations of the

elements in εt.

We are searching for the quadratic terms in the Taylor-series approxima-

tion of the policy function which we will denote Xt = H(Xt−1, Zt, σ).
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The second-order Taylor-series approximation of row i of H is:

H i(Xt−1, Zt, σ) = H i(X̄, Z̄, 0) +
[
H i
X H i

Z

]X̃t−1

Z̃t



+ 1
2

[
X̃T
t−1 Z̃T

t σ
]

H i
XX H i

XZ 0

H i
ZX H i

ZZ 0

0 0 H i
σσ



X̃t−1

Z̃t

σ


(3.3)

The H i
X and H i

X terms are the approprite rows of the P and Q matrices in

Uhlig’s notation.

3.1 Useful Definitions and Notation

We make the following useful definitions.

H ≡


H1(Xt−1, Zt, σ)

...

HnX (Xt−1, Zt, σ)



HX ≡


H1
X1 . . . H1

XnX

...
. . .

...

HnX

X1 . . . HnX
XnX



HZ ≡


H1
Z1 . . . H1

ZnZ

...
. . .

...

HnX

Z1 . . . HnX
ZnZ


Note that H is an nX × 1 vector, HX is an nX ×nX matrix and HZ is an
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nX × nZ matrix.

We also define a nX × nX matrix SX and a nX × nZ matrix RZ .

SX = HXHX

RZ = HXHZ +HZN

We define three three-dimensional tensors, HXX , HZZ and HXZ , which

are nX ×nX ×nX , nX ×nZ ×nZ and nX ×nX ×nZ . respectively. Hσσ is an

nx × 1 vector.

In (3.3) an i superscript on any of the tensors, HXX , HZZ and HXZ ,

denotes the ith slice in the third dimension, which indexes the equation in

(3.1). For Hσσ an i superscript denotes the ith element in the vector. For

HX , HZ , SX and RZ it denotes the ith column of the matrix which indexes

the variable being differentiated.

For derivative matrices of the Γ function we adopt the notation that

Γi
[Xt+1,Xt,x

j
t−1]

denotes a column vector of first derivatives of the ith equation

with respect to the vector Xt+1, the vector Xt, and the scalar xjt−1, which

is the jth element in the vector Xt−1. Γi[... ][... ] will denote a matrix of second

derivatives with the first sqare bracket indicating the rows and the second

indicating the columns of the variables.
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3.2 Linear Terms

Differentiating the ith equation in (3.1) with respect to xjt−1 and evaluating

at (X̄, Z̄, σ) gives:

[
SjX

T
Hj
X

T
1
]

Γi
[Xt+1,Xt,x

j
t−1]

= 0 (3.4)

Note that (3.4) defines a set of nX
2 equations are the conditions that implic-

itly define the nX
2 first-order terms in HX . (P in Uhlig’s notation.)

We can also differentiate (3.1) with respect to zjt and evaluate at (X̄, Z̄, σ)

to get: [
Rj
Z

T
Hj
Z

T
N iT 1

]
Γi
[Xt+1,Xt,Zt+1,z

j
t ]

= 0 (3.5)

where N i is ith column of the N matrix in (3.2). This set of xXnZ equations

are the conditions that implicitly define the xXnZ first-order terms in HZ .

(Q in Uhlig’s notation.)

3.3 Quadratic Terms

In this subsection we will use the perturbation results from section 2 above.

Differentiating (3.4) with respect to xkt−1 gives:

[
SjX

T
Hj
X

T
1
]

Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,xkt−1]


SkX

Hk
X

1


+
[
Γi[Xt+1]

HX + Γi[Xt]

]
Hjk
XX = 0

where Hjk
XX is a nX × 1 vector from the three-dimensional tensor HXX
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This can be rewritten as:

[
Γi[Xt+1]

HX + Γi[Xt]

]
Hjk
XX

= −
[
SjX

T
Hj
X

T
1
]

Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,xkt−1]


SkX

Hk
X

1

 (3.6)

This is a system of nX
3 equations and unknowns that implicitly defines the

elements of the three-dimensional tensor HXX . By vectorizing the elements

in HXX this system can be written in the form AH = q with H = vec{HXX}.

Similarly, differentiating (3.4) with respect to zkt reveals that the elements

of HXZ solve:

[
Γi[Xt+1]

HX + Γi[Xt]

]
Hjk
XZ

= −
[
SjX

T
Hj
X

T
1
]

Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,Zt+1,zkt ]


Rk
X

Hk
X

N i

1


(3.7)

This is a system of nX
2nZ equations and unknowns that implicitly defines

the elements of HXZ , which can also be written in the form AH = q.
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Differentiating (3.5) with respect to zkt shows that elements of HZZ solve:

[
Γi[Xt+1]

HZ + Γi[Xt]

]
Hjk
ZZ

= −
[
Rk
X
T

Hk
X
T

N iT 1
]

Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,Zt+1,zkt ]


Rk
X

Hk
X

N i

1


(3.8)

This is a system of nXnZ
2 equations and unknowns that implicitly defines

the elements of HZZ

The elements of Hσσ solve:

HT
σσΓi[Xt+1]

= −
[
∆1 . . . ∆nZ

]
Γi[Xt+1,Zt+1][Xt+1,Zt+1]


∆1

...

∆nZ

 (3.9)

where ∆i ≡
∑nZ

s=1 ωisε
s
t+1 and ωrc is the rth row and cth column of the Ω

matrix.

This is a system of nX equations and unknowns that implicitly defines

the elements of Hσσ.
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4 Applying Perturbation Methods to the Brock

and Mirman Model

In the model from Brock and Mirman (1972) we will have HX = P and

HZ = Q from the linearization exercise. Equations (3.4) and (3.5) reduce to:

P 2F + PG+H = 0

(PQ+QN)F +QG+NL+M = 0
(4.1)

Which are the same conditions as we got from linearization earlier.

Equations (3.6) – (3.8) reduce to:

HXX = −

[
P 2 P 1

]
Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,xkt−1]


P 2

P

1


FP +G

(4.2)

or

HXX = −

 P 4Γ[Xt+1][Xt+1] + P 2Γ[Xt][Xt] + Γ[Xt−1][Xt−1]

+2P 3Γ[Xt+1][Xt] + 2PΓ[Xt][Xt−1] + 2P 2Γ[Xt+1][Xt−1]


FP +G

(4.3)
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HXZ = −

[
P 2 P 1

]
Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,Zt+1,zkt ]


PQ+QN

Q

N

1


FP +G

(4.4)

HZZ = −

[
PQ+QN Q N 1

]
Γi
[Xt+1,Xt,x

j
t−1][Xt+1,Xt,Zt+1,zkt ]


PQ+QN

Q

N

1


FP +G

(4.5)

5 Applying Perturbation Methods to Other

Models

As we can see from the previous example, it is critically important to keep ac-

curate track of the elements in the various vectors, matrices and tensors. To

implement perturbation methods with other models there are preprogammed

software packages that make the accounting for variables easy. The most

commonly used is a package called Dynare which runs in conjunction with

MATLAB or Octave. There is also a stand-alone version and a version

that runs with Python, which is called Dolo. Dynare will implement lin-
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ear, quadratic and cubic approximations of policy functions. We will spend

a full lecture exploring some of its capabilities.
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Exercises

Homework 1

For the function F (k′, k) = (k.35 + .9k− k′)−2.5− .95(k′.35 + .9k′)−2.5 = 0, use

perturbation methods to find the cubic approximation of k′ = f(k) about

the point k = 0.1. In this case, k′ = f(0.1) = 0.069986.

Homework 2a

For the Brock and Mirman model with the default parameter values find the

scalar values of HX , HX , HXX , HXZ , HZZ and Hσσ.

Plot the three-dimensional surface plot for the policy function K ′ =

H(K, z). Compare this with the closed form solution from the notes and

the two approximations from the previous homework set (numbers 7a and

8a).

Homework 2b

Repeat the above exercise using k ≡ lnK in place of K as the endogenous

state variable.

Lab 3a

Using Dynare replicate the results from the previous homework set, problem

14. Be sure to specify a first-order approximation. Report the linear coef-

ficents in the policy function. Then replicate the moments and IRFs from

problems 15 and 16.
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Lab 3b

Repeat the above exercise using a second-order approximation of the policy

function. Report all linear and quadratic coefficients. Comment on any

differences.

Lab 3c

Repeat problem 3a using a third-order approximation of the policy func-

tion. Report all linear, quadratic and cubic coefficients. Comment on any

differences.
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