
Introduction
Now that we have covered how to solve simple dynamic programming problems by value function
iteration, we consider the convergence of the algorithm. We demonstrate two other methods
known as policy function iteration, and modified policy function iteration. These methods are
also sometimes known as Howard’s Improvement for Ronald A. Howard, a Stanford Professor
who pioneered their development.

Policy Function Iteration
For infinite horizon dynamic programming problems, it can be shown that value function iteration
converges at the rate β, where β is the discount factor. In practice, β is usually close to one which
means this algorithm often converges slowly.

In order to examine the value function iteration algorithm, it is helpful to see which functions
take the most runtime.

Problem 1 In Ipython, enter

%run -p -s cum Value_Function_Iteration.py

where Value Function Iteration.py is the name of your script that solves the infinite horizon
problem by value function iteration. This will list the function calls made by your code, sorted
by the time it spends within each function (including time spent in subfunctions).

Run the same command, this time changing the number of grid points N to be 1000.
Run the command once more, this time setting N = 1000 and β = .95.

In problem 1 you should have noticed that runtime was significantly longer to run for larger
N or β closer to 1. The profiler gives more detailed information than just the overall runtime,
however. The results of problem 1 should look something like the following.

%run -p -s cum Value_Function_Iteration.py

622 function calls in 2.542 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 3.065 3.065 <string >:1(<module >)

1 0.001 0.001 3.065 3.065 {execfile}

1 0.955 0.955 3.064 3.064 Value_Function_Iteration.py:5(<

module >)

59 0.000 0.000 1.418 0.024 fromnumeric.py:683( argmax)

59 1.417 0.024 1.417 0.024 {method ’argmax ’ of ’numpy.ndarray ’

objects}

59 0.001 0.000 0.613 0.010 fromnumeric.py :1774( amax)

59 0.612 0.010 0.612 0.010 {method ’max’ of ’numpy.ndarray ’

objects}

We notice that the most time was spent in the maximization step. Remember, the value
function iteration method maximizes V (and determines the corresponding policy function ψ)
at every step. Because we find both a new V and a new ψ at every step, we only apply the
new policy function for one iteration. This gives us a crude approximation to the value function
that corresponds to the new policy function, resulting in slow convergence of the value function.
Instead, we might consider finding the exact value function associated with each new policy
function.
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This is the idea behind the policy function iteration algorithm. In this way we iterate on the
policy functions rather than the value functions. The algorithm for the policy function iteration
can be summarized as follows:

1. Set an initial policy rule W ′ = ψ0(W ) and a tolerance δ.

2. Compute the value function assuming this rule is used forever:

Vk(W ) =

∞∑
t=0

βtu(W − ψk(W )) (1)

We will discuss how to compute this below.

3. Determine a new policy ψk+1 so that

ψk+1(W ) = argmaxW ′ {u(W −W ′) + βVk(W −W ′)} (2)

4. If δk = ||ψk+1 − ψk|| < δ, stop, otherwise go back to step b with subscript k + 1.

In order to compute the value function, Vk corresponding to a given policy ψk, we must
solve

Vk(W ) = u(W −W ′) + βVk(W ′) (3)

= u(W − ψ(W )) + βVk(ψ(W )) (4)

for Vk.
Once we have discretized W into W1, . . . ,WN , equation (3) is a linear system which we can

rewrite as
Vk(W ) = u(W − ψ(W )) + βQVk(W ) (5)

where if W is a vector of length N , then Q is the N ×N matrix

Qij =

{
1 if Wj = ψ(Wi)
0 otherwise

. (6)

That is, Qij = 1 if Wi = ψ(Wj) and is zero otherwise. We see that Q has the property
that QW = ψ(W ) (thinking of W as a vector). Similarly QV (W ) = V (ψ(W )). Thus we have
manipulated 3 so that we are plugging the same variable, W , into both instances of Vk. By doing
so, we can now solve for Vk as

Vk = (I − βQ)−1u(W −W ′). (7)

Although Q may be large, we can take advantage of the fact that it is sparse, containing only N
nonzero entries out of N2 total entries.

Problem 2 Solve the infinite horizon cake eating problem from the Value Function Iteration lab
again, this time using policy function iteration. In order to take advantage of the sparse matrices
I and Q, use the following import line

from scipy.sparse.linalg import spsolve

and the following code to initialize I (outside the loop)

I = sp.sparse.identity(N)
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and Q (inside the loop since it depends on the current policy function)

rows = sp.arange(0,N)

columns = psi_ind

data = sp.ones(N)

Q = sp.sparse.coo_matrix ((data ,(rows ,columns)),shape = (N,N))

Q = Q.tocsr ()

where N is the size of the W grid and psi ind is the vector of indices of W ′ for a given W
according to the current policy (psi ind is obtained from the argmax step). Rather than compute
(I − βQ)−1 directly, use scipy’s sparse solver

V = spsolve(I-beta*Q,u(W-W[psi_ind ])).

Take N = 1000 and β = .95.
Plot the policy function and compare with your policy function from the Value Function

Iteration Lab.

Modified Policy Function Iteration
While policy function iteration converges in fewer iterations, solving the linear system can be
slow, especially for problems with a large state space. There is an alternative to this called
modified policy function iteration.

In modified policy function iteration, we don’t compute the exact value function corre-
sponding to a policy. Instead, at step (2) of the policy iteration algorithm we iterate m times on
the value function equation (5) to get an approximation of the new value function. By iterating
on (5) we mean evaluate the right side of (5) to get a new value function. Then plug this new
function into the right hand side to get yet another value function. Repeat this m times. This
is faster than solving for the exact value function for large state spaces. There is no strict rule
on the value of m, the number of value function iterations. In practice values such as m = 10 or
m = 15 often work well.

Note that our methods for solving dynamic programs boil down to some combination of
two things: iterating on the value function and iterating on the policy function. Modified policy
function does a combination of the two, taking advantage of the strengths of both methods.
Because modified policy iteration takes only slightly more work to code than value function
iteration, it is often preferred in practice. Whether policy or modified policy iteration will perform
better may depend on the problem.

Problem 3 Solve the same problem as in problem 2, this time using the modified policy function
iteration method with m = 15. In this case let convergence be determined in the same way
(computing δk) in the same way as in the value function iteration problem.

Problem 4 Solve the cake eating problem with each of the three methods: Value Function It-
eration, Policy Function Iteration, and Modified Policy Function Iteration. Report how many
iterations each method takes. Also determine which methods have the fastest and slowest run-
times. Use N = 1000 as the number of grid points for W and β = 0.95. It is important that you
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use the same initial guess in each case in order to make the results comparable. The accuracy of
the initial guess greatly effects the number of iterations to convergence. Take your initial guess as
V = 0 which corresponds to an initial guess of the policy function with indices [0, 1, 2, . . . , N − 1]
(meaning ψ = 0).

In general we should see that value function iteration takes more iterations than modified
policy function iteration which in turn takes more iterations than policy function iteration. It
is important to note that this does not directly say anything about runtime. Each iteration of
policy iteration may take longer than an iteration of value function iteration.
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