
Econ 413R: Computational Economics
Spring Term 2013

Structural Vector Autoregressions

Macroeconomists are intersted in estimating and drawing inferences from

“simultaneous equations models.” These models are intended to characterize

the structure of the economy.

1 Four Representations

We will consider four different representations of a system of dynamic equa-

tions.

1.1 Structural VAR

A0yt = A1yt−1 + . . . + Apyt−p + εt, t = −p + 1, . . . , 0, 1, . . . , T (1.1)

where we assume that V ar(εt) = E(εtε
′
t) ≡ Ω, a diagonal matrix.

Note that yt, t = −p + 1, . . . , 0, 1, . . . , T are K × 1 vectors of obser-

vations on economic variables, εt, t = −p + 1, . . . , 0, 1, . . . , T are K × 1

vectors of structural disturbances (shocks), which have economic interpreta-

tion, Ai, i = 1, . . . , p are K × K coefficient matricies. The fact that A0 is
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not a diagonal matrix makes this a system of simultaneous equations. Ω is

a diagonal covariance matrix which implies that the structural disturbances

are uncorrelated.

Our problem is that the structural VAR is not identified (uniquely es-

timable) without sufficient restrictions. Sims (1980) was very critical of the

tradition approach to identification which imposed ad hoc zero restrictions

on elements of A0 and A1, . . . , Ap without theoretical justification. He argued

that it may be more credible to impose identifying restrictions only on A0

which reflects responses of variables to each other within a time period. The

credibility of such restrictions depends on length of the period (frequency)

of observations and the kind of variable in question.

We may use the lag operator to rewrite (1.1) as

A(L)yt = εt, t = −p + 1, . . . , 0, 1, . . . , T (1.2)

where A(L) is the following matrix of polynomials of degree p in the lag

operator L:

A(L) = [A0 − A1L− . . .− ApL
p]

1.2 Structural MA

Solve (2.1) for yt to obtain the structural moving average representation:

yt = A(L)−1εt ≡ [C0 + C1L + C2L
2 + . . .]εt = C(L)εt (1.3)

Note that the elements of the infinite order matrix polynomial C(L) give

the K2 impulse response functions (IRFs). Cij,h is the response of
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variable i in h periods to a one unit movement in the jth structrual shock

today, period 0. The IRFs are of particular interst to macroeconomists. As

the structural VAR representation is not identified, neither is the structual

MA representation.

1.3 Reduced Form VAR

We can obtain the reduced form VAR representation of this system by pre-

multiplying (1.1) by A−1
0 .

yt = A−1
0 A1yt−1+ . . .+A−1

0 Apyt−p+A−1
0 εt = B1yt−1+ . . .+Bpyt−p+ut (1.4)

This representation is sometimes referred to simply as a VAR model. The K

equations of the VAR model can be estimated using ordinary least squares

(OLS). The reduced form errors (innovations), ut = A−1
0 εt, are (as yet) un-

known nonlinear functions of the structural shocks and do not have any direct

economic interpretation. The variance of ut is given by

V ar(ut) = E(utu
′

t) = (A−1
0 )Ω(A−1

0 )
′ ≡ Σ

If we assume Ω = I (a normalization), then Σ = (A−1
0 )(A−1

0 )
′
. Equivalently

we could normalize by assuming the diagonal elements of A0 are unity.

An alternative way of writing (1.4) is to once again use the lag operator.

B(L)yt = ut (1.5)

where B(L) is the following matrix polynomial of degree p in the lag operator,
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L:

B(L) = [I −B1L− . . .−BpL
p]

1.4 Reduced Form MA

We solve (1.5) for yt to obtain the final representation of our system, the

reduced form moving average representation.

yt = B(L)−1ut ≡ [D0 + D1L + D2L
2 + . . .]ut = D(L)ut (1.6)

where D(L) is an infinite order matrix polynomial.

Note that the following recursion holds:

D0 = I

Dj =

p∑
i=1

BiDj−i, j = 1, 2, . . .

Dj = 0, j < 0

Equation (1.6) is an impulse response function, but the reduced form

errors, ut, have no economic interpretation except as one-step-ahead forecast

errors. By the definition of B(L) and the fact that ut = A−1
0 εt, we can write

the reduced form MA representation in terms of the structural parameters.

yt = D(L)ut = [A−1
0 A(L)]−1A−1

0 εt (1.7)
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2 Identification

How can we recover estimates of the structural parameters in (1.1) and (1.3)

from knowledge of the reduced form parameters in equations (1.4) and (1.6)?

In particular, we would like to estimate the impulse response functions given

in (1.3). There are two ways to consider identifying (1.3). The first requires

knowledge of A0 to go from the observable (estimable) reduced form VAR

(1.4) to the SVAR (1.1). The second requires knowledge of A0 to go from

the observable reduced form MA representation (1.6) to the structural MA

representation (1.3).

2.1 From (1.4) to (1.1)

Note that A0B(L) = A(L) and A0ut = εt. Thus we can obtain (1.1) by

pre-multiplying (1.4) by A0. We can then invert (1.1) to obtain the desired

impulse response functions, (1.3). Thus a knowledge of A0 is sufficient to

identify the IRF.

2.2 From (1.6) to (1.3)

Recall (1.3) and (1.6) and the fact that D0 = I.

yt = A(L)−1εt = [C0 + C1L + C2L
2 + . . .]εt = C(L)εt (2.1)

yt = B(L)−1ut = [I + D1L + D2L
2 + . . .]ut = D(L)ut (2.2)

Equating terms we have C0εt = ut for all t and Csεt−s = Dsut−s =
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DsC0εt−s for all t and for s = 0, 1, 2, . . . which implies Cs = DsC0. Thus

knowledge of C0 is sufficient to identify the IRF. But C0εt = ut = A−1
0 εt

implies that C0 = A−1
0 . So, as in the previous case, we see that knowledge of

A0 is sufficient to identify the desired IRF.

2.3 Identifiying A0

Recall that the reduced form disturbance covariance matrix is V ar(ut) = Σ =

(A−1
0 )(A−1

0 )
′

if we normalize, by assuming Ω = I. Observable Σ is symmetric

and therefore only has K(K+1)
2

unique elements. A0 has K2 unique elements.

If we can find enough restrictions on A0 such that the remaining parameters

in A0 are uniquely determined by Σ then then model is exactly identified. The

necessary condition for this identification is that we impose K2 − K(K+1)
2

=

K(K−1)
2

restrictions. These restrictions can come from a number of sources

including economic theory, information lags, and physical constraints. Once

these restrictions are imposed we can obtain A0 using Σ = (A−1
0 )(A−1

0 )
′

with

a nonlinear equation solver. After obtaining A0, we can recover εt = A0ut

and construct the impulse responses by Cs = DsA
−1
0 , s = 0, 1, 2, . . . There

are two leading approaches to obtaining these addtional K(K−1)
2

identifying

restrictions: short-run restrictions and long-run restrictions.

2.3.1 Short-Run Restrictions

Impose K(K−1)
2

restrictions directly on A0. These can be zero restrictions, but

need not be. Assuming that the (i, j)th element of A0 is zero implies that the

ith variable does not respond contemporaneously to the jth structural shock.

Such an assumption may be credible depending on the sampling frequency
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and on the nature of the variables. For example, it is more reasonable to

assume that a monetary policy shock has no effect on the unemployment

rate within a month than within a year. Similarly, it is more reasonable to

assume that a monetary policy shock has no contemporaneous effect on the

unemployment rate than no effect on the market interest rate.

The most frequently used approach is to assume that A0 is a triangular

matrix with the K(K−1)
2

terms above the diagonal equal to zero. This struc-

ture imposes a Cholesky decomposition which implies a recursive structure

on the model. This is a very special structure that is rarely justified by

economic theory.

2.3.2 Long-Run Restrictions

Note that the long run (cumulative) effects of shocks on the variables of the

model are given by adding up the short-run effects: C(1) = [C0+C1+C2+. . .]

where we have substituted L = 1. Long-run restrictions are imposed on

C(1) which imply restrictions on A0. For example, we may assume that the

(i, j)th element of C(1) is zero. This implies that a change in the jth shock

has no long-run effect on the ith variable. Recall from (1.3) and (1.6) that

yt = C(L)εt = D(L)ut. This implies the equivalence of the corresponding

long-run covariance matrices

D(1)ΣD(1)
′
= C(1)ΩC(1)

′
= C(1)C(1)

′
(2.3)

The left-hand-side of (2.3) is observable with K(K+1)
2

unique elements.

The right-hand-side has K2 unobserved elements so we need (at least) K(K−1)
2
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restrictions on C(1). These can come from assumptions that certain shocks

have no long-run effects on certain variables which imply specific zero ele-

ments in C(1). We can easily see that these long-run restrictions are, in fact,

restrictions on A0 when we pre-multiply both sides of (2.3) by D(1)−1 and

post-multiply by [D(1)
′
]−1. Notice that D(L)−1C(L) = B(L)A(L)−1 = A−1

0 .

3 Examples

We consider two simple examples that illustrate how to obtain impulse re-

sponse functions under these two identification strategies. Both are based on

a model investigated by Blanchard and Quah (1989). They only consider a

long-run restriction, but we will use their model to think about a short-run

restriction as well.

3.1 Short-Run Restriction

Blanchard and Quah (BQ) consider a two variable/equation model (K = 2)

with

yt =

∆RGDPt

Ut


where U is the unemployment rate as a percent and RGDP is measured as the

natrual logarithm of real GDP. We only need one restriction since K(K−1)
2

= 1.

We want to interpret the structural shocks as aggregate supply and aggregate

demand shocks and do so by assuming that an aggregate demand shock will

have no contemporaneous effect on the unemployment rate. This reflects the

widely-held belief that unemployment reacts with a lag to aggregate demand
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shocks. We can impose this restriction in the representation of the reduced

form VAR where we denote the elements of A−1
0 as aij.

∆RGDPt

Ut

 = B1yt−1 + . . . + Bpyt−p +

a11 a12

a21 0

εAS
t

εAD
t


(This would be a standard triangular matrix if we reordered the elements

of yt.) We can estimate the IRF using the following steps:

i. Obtain Bs, s = 1, 2, . . . , p, ut, t = 1, . . . , T , and Σ by estimating the

reduced form VAR using OLS (including a constant term or measuring

the variables as deviations from their means).

ii. Using an equation solver, recover the restricted A−1
0 from

Σ11 Σ12

Σ12 Σ22

 =

a11 a12

a21 0

a11 a21

a12 0

 =

a211 + a212 a11a21

a11a21 a221


iii. Obtain Ds, s = 0, 1, 2, . . . using the recursion given in Section 1.4.

iv. Recover εt = A0ut and construct the four structural impulse response

functions from

Cs = DsA
−1
0 , s = 0, 1, 2, . . .

Recalling that D0 = I, we can then plot the desired IRFs for s =

1, 2, . . . , H where H is a chosen horizon (e.g. 40 quarters).

Note: We usually want to plot the IRFs for the level of RGDP, not

its changes, so for each horizon we must cumulate the impulse responses
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for changes up to that horizon; i.e. the impulse response for the level of

RGDP in response to an aggregate supply shock at horizon h is computed

as
∑h

s=0C11,s.

3.2 Long-Run Restriction

Consider the same pre-restriction two-variable model as in the previous ex-

ample. As before, we need one addtional restriction to identify the model. In

this example we follow Blanchard and Quah (1989) by assuming that the ag-

gregate demand shock has no long-run effect on the level of RGDP as implied

by most macroeconomic theories. Since the variable in yt is RGDP growth,

this is a restriction on the cumulative effect on output growth rates of the

aggregate demand shock which is a zero restriction on the (1,2) element of

C(1).

We can estimate the IRF using the following steps:

i. Obtain the unknown elements of C(1) as follows:

• Obtain Bs, s = 1, 2, . . . , p, ut, t = 1, . . . , T , and Σ by estimating

the reduced form VAR using OLS (including a constant term or

measuring the variables as deviations from their means).

• Compute D(1) = B(1)−1 where B(1) = I −B1 − . . .−Bp.

• Use an equation solver to obtain C(1) from (2.1).

D(1)ΣD(1)
′
= C(1)C(1)

′
=

C11(1) 0

C21(1) C22(1)

C11(1) C21(1)

0 C22(1)
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ii. Recover A−1
0 from D(1)−1C(1) = A−1

0

iii. Obtain Ds, s = 0, 1, 2, . . . using the recursion given in Section 1.4.

iv. Recover εt = A0ut and construct the four structural impulse response

functions from

Cs = DsA
−1
0 , s = 0, 1, 2, . . .
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Exercises

Homework 1

SVAR with a short-run restriction

Construct the four impulse response functions (IRFs) for the two-variable

model of Example 1 in section 3.1 with

yt =

 Ut

∆RGDPt


εt =

∆εAS
t

εAD
t


where ∆RGDPt is the difference of the log of real GDP (i.e, the rate of

growth of real GDP) and Ut is the unemployment rate as a percent. Note

that I have reordered the variables in order to get a standard triangular A−1
0

matrix. [Data can be downloaded from the FRED site available at the website

of the Federal Reserve Bank of St. Louis.] For purposes of comparison, use

quarterly data from 1948:1-1987:4 and make no other adjustments to the

data. Use the assumption that AD shocks have no contemporaneous effects

on the unemployment rate. Estimate your VAR model using eight lags (i.e., p

= 8) and choose a horizon of 40 quarters for your impulse response functions

(i.e., H = 40). Recall that we are interested in the IRF for the level of RDGP

(which is the natural log of real GDP)
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Homework 2

SVAR with a long-run restriction Construct the four IRFs for the two-

variable model of Example 2 in section 3.2 with

yt =

∆RGDPt

Ut


εt =

∆εAS
t

εAD
t


where the variables are measured as in Homework 1. Once again, use quar-

terly data from 1948:1-1987:4 and make no other adjustments to the data. In

this problem, however, use that assumption that AD shocks have no long-run

effect on the (log) level of real GDP. As in the previous problem, estimate

your VAR model using eight lags (i.e., p = 8) and choose a horizon of 40

quarters for your impulse response functions (i.e., H= 40). Once again, recall

that we are interested in the IRF for the level of RDGP (which is the natural

log of real GDP)
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