
Lab 13

Algorithms: QR
Decomposition using
Householder reflectors

Lab Objective: Use orthonormal transformations to perform QR decomposition.

Orthonormal transformations

Recall that a matrix Q is unitary if QHQ = I or for real matrices, QTQ = I. For

the real case we say that such a matrix is orthonormal.

Unitary transformations have the very desirable property of being numerically

stable. The number κ(A) = ‖A‖
∥∥A−1

∥∥ is called the condition number of A. We’ll

discuss condition number more in another lab; for now, all you need to know is

that if κ(A) is small, then calculations involving A are less susceptible to numerical

errors. For the induced 2-norm, it holds that ‖Q‖ = 1 when Q is unitary. The

Cauchy-Schwarz inequality ‖AB‖ ≤ ‖A‖ ‖B‖ also holds for this norm, and so it

follows that κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ ∥∥AA−1
∥∥ = ‖I‖ = 1. Note that if Q is unitary,

Q−1 = QH and QH is also unitary, so κ(Q) = ‖Q‖
∥∥QH

∥∥ = 1. This means that

orthonormal matrices have the smallest possible condition number.

Any orthogonal matrix Q can be described as a reflection, a rotation, or some

combination of the two. If det(Q) = 1, then Q is a rotation. If det(Q) = −1, then

Q is a reflection or a composition of a reflection and a rotation. Let’s explore these

two types of unitary transformations and some of their applications. We will focus

on the real case to simplify matters.

Householder reflections

A Householder reflection is a linear transformation P : Rn → Rn that reflects a

vector x about a hyperplane. See figure 13.1. Recall that a hyperplane can be

defined by a unit vector v which is orthogonal to the hyperplane. As shown in

figure 13.1, x − 〈v, x〉v is the projection of x onto the hyperplane orthogonal to

v. However, to reflect across the hyperplane, we must move twice as far; that

is, Px = x − 2〈v, x〉v. This can be written Px = x − 2v(vHx), so P has matrix

representation P = I − 2vvH. Note that PHP = I; thus P is orthonormal.

105



106 Lab 13. QR Decomposition using Householder reflectors

v

x

Qx

x-<v,x>v

Figure 13.1: Householder reflector

Householder triangularization

Consider the problem of computing the QR decomposition of a matrix A. You’ve

already learned the Gram-Schmidt and the Modified Gram-Schmidt algorithms for

this problem. The QR decomposition can also be computed by applying a series

of Householder reflections. Gram-Schmidt and Modified Gram-Schmidt make A

orthonormal using a series of transformations stored in an upper triangular matrix.

On the other hand, we can use Householder reflections to make A triangular by a

series of orthonormal transformations.

Let’s demonstrate this method on a 4×3 matrix A. First we find an orthonormal

transformation Q1 that maps the first column of A into the span of e1 (where e1

is the vector where the first element is one and the remainder of the elements are

zeros).


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q1−→


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗


Let A2 be the boxed submatrix of A. Now find an orthonormal transformation Q2

that maps the first column of A2 into the span of e2.



107

∗ ∗∗ ∗
∗ ∗

Q2−→

∗ ∗0 ∗
0 ∗


Similarly,

(
∗
∗

)
Q3−→

(
∗
0

)
. (Technically Q2 and Q3 act on the whole matrix and not

just on the submatrices, so that Qi : Rn → Rn for all i. Q2 leaves the first row and

the first column alone, and Q3 leaves the first two rows and the first two columns

alone.) Then Q3Q2Q1A =

Q3Q2Q1


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = Q3Q2


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 = Q3


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


We’ve accomplished our goal, which was to triangularize A using orthonormal

transformations. But how do we find the Qi that do what we want? The answer

lies in using Householder reflections.

To find Q1, we first identify an appropriate hyperplane to reflect x into the span

of e1. It turns out there are two hyperplanes that will work, as shown in figure

13.2. (In the complex case, there are infinitely many such hyperplanes.) Between

the two, the one that reflects x further will be more numerically stable. This is the

hyperplane perpendicular to v = sign(x1) ‖x‖2 e1 + x.

To see how this works, let x be the first column of the submatrix that we want

to project onto the span of e1. In order for this to be a unitary operation, this will

need to preserve the norm of x. This means that
(
I − 2vvH

)
x = ±‖x‖ e1, or, in

other words,

2vvHx =


x1 ± ‖x‖

x2

x3

...

xn


Let u be the vector on the right hand side of this expression. It can be shown

that the vector u
‖u‖ is the proper choice for v.

This whole process is summarized in Algorithm 13.1.

To see how we are operating on the matrices A and Q, consider the way each

orthonormal transformation defined by the vk operates blockwise on each matrix.

The matrix form of each operation on A and Q can be represented in block form

like this: (
I 0

0 I − 2vkv
H
k

)
Notice that a block matrix of this form operates only on entries that lie in the

rows from k onward. Consider what happens when we left-multiply a m×n matrix

by a block matrix of this form. We obtain the following:



108 Lab 13. QR Decomposition using Householder reflectors

x

Q1(x)Q2(x)

Figure 13.2: two reflectors

Algorithm 13.1 Householder triangularization

1: procedure Householder(A)

2: m,n← shape (A)

3: R← copy (A)

4: Q← Im
5: for 0 ≤ k < n− 1 do

6: vk ← copy (Rk:,k)

7: vk0 ← vk0 + sign (vk0) ‖vk‖
8: vk ← vk/ ‖vk‖
9: Rk:,k: ← Rk:,k: − 2vk

(
vHkRk:,k:

)
10: Qk: ← Qk: − 2vk

(
vHkQk:

)
11: return QH, R

(
I 0

0 I − 2vkv
H
k

)
·
(
A[: k, : k] A[: k, k :]

A[k :, : k] A[k :, k :]

)
=

(
A[: k, : k] A[: k, k :]

A[k :, : k]− 2vkv
H
kA[k :, : k] A[k :, k :]− 2vkv

H
kA[k :, k :]

)
And, when we consider right multiplication by the same block matrix, we see

that it fixes the first k − 1 columns as below.

(
A[: k, : k] A[: k, k :]

A[k :, : k] A[k :, k :]

)
·
(
I 0

0 I − 2vkv
H
k

)
=

(
A[: k, : k] A[: k, k :]− 2A[: k, k :]vkv

H
k

A[k :, : k] A[k :, k :]− 2A[k :, k :]vkv
H
k

)



109

When we are iterating through the columns of R and zeroing out the entries

below the main diagonal we are able to safely ignore all the entries that lie in

columns we have already processed because they are already zero.

This algorithm returns orthonormal Q and upper triangular R satisfying A =

QR. Notice that we did not explicitly construct each orthonormal reflector ma-

trix. We applied the changes we needed to each portion of the array that needed

to be changed. Doing the operations in this way allows us to avoid unnecessarily

increasing the computational complexity of the algorithm. A few other clever op-

timizations can still be applied, but they will not change the overall complexity of

the algorithm.

Another important thing to notice is that an outer product is needed to compute

vk
(
vHkA[k :, k :]

)
, not an inner product. Make sure that you account for this when

you write the code to run this algorithm. You can either make the vectors vk column

vectors (two dimensional with a single column) instead of just one-dimensional

arrays, or you can use the built in function np.outer in the appropriate place.

Problem 1. Write a function householder that accepts an array A as input,

and performs the algorithm described above to compute the QR decomposi-

tion of A. Return the matrices Q and R.

It is simple to check that your code works: multiply the two output

matrices of your function, and check that the result matches the original

input matrix.

Stability of the Householder QR algorithm

We will now examine the stability of the Householder QR algorithm. We will use

SciPy’s built in QR factorization which uses Householder reflections internally.

Try the following in Python.

>>> import numpy as np

>>> from numpy.random import rand

>>> from scipy import linalg as la

>>> Q, X = la.qr(rand (500 ,500)) # create a random orthonormal matrix←↩
:

>>> R = np.triu(rand (500 ,500)) # create a random upper triangular ←↩
matrix

>>> A = np.dot(Q,R) # Q and R are the exact QR decomposition of A

>>> Q1 , R1 = la.qr(A) # compute QR decomposition of A

>>> la.norm(Q1-Q)/la.norm(Q) # check error in Q

0.282842955725

>>> la.norm(R1-R)/la.norm(R) # check error in R

0.0428922016647

This is terrible! This algorithm works in 16 decimal points of precision, but Q1 and

R1 are only accurate to 0 and 1 decimal points, respectively. We’ve lost 16 decimal

points of precision!

Don’t lose hope. Check how close the product Q1R1 is to A.



110 Lab 13. QR Decomposition using Householder reflectors

>>> A1 = Q1.dot(R1)

>>> np.absolute(A1 - A).max()

3.9968028886505635e-15

We’ve now recovered 15 digits of accuracy. Considering the error relative to the

norm of A (using the 2-norm for matrices), we see that this relative error is even

smaller.

>>> la.norm(A1 - A, ord =2) / la.norm(A, ord=2)

8.8655568331889288e-16

The errors in Q1 and R1 were somehow “correlated,” so that they canceled out in

the product. The errors in Q1 and R1 are called forward errors. The error in A1 is

the backward error.

In fact, the large errors in Q1 and R1 were not because the algorithm was bad,

it was because A was poorly conditioned. The condition number for randomly

generated upper triangular matrices generally very high, and this was the case

here. This has, in turn, made the condition number of A extremely large as well.

Try the following to compute the condition numbers of A. In this case the condition

numbers of A and R are computed to be different, though, in theory, they should

be exactly the same.

>>> from numpy.linalg import cond

>>> cond(A)

4.1426075832870472e+18

>>> cond(R)

3.1767577244363792e+19

Householder QR factorization is more numerically stable than Gram-Schmidt or

even Modified Gram-Schmidt (MGS). However, MGS is still useful for some types

of iterative methods, because it finds the orthonormal basis one vector at a time

instead of all at once (for an example see Lab 17).

Upper Hessenberg Form

An upper Hessenberg matrix is a square matrix with zeros below the first subdiag-

onal. Every n × n matrix A can be written A = QTHQ where Q is orthonormal

and H is an upper Hessenberg matrix, called the Hessenberg form of A.

The Hessenberg decomposition can be computed using Householder reflections,

in a process very similar to Householder triangularization. Let’s demonstrate this

process on a 5 × 5 matrix A. Note that A = QTHQ is equivalent to QAQT = H;

thus our strategy is to multiply A on the right and left by a series of orthonormal

matrices until it is in Hessenberg form. If we try the same Q1 as in the first step of

the Householder algorithm, then with Q1A we introduce zeros in the first column

of A. However, since we now have to multiply Q1A on the left by QT1 , all those

zeros are destroyed, as demonstrated below. In order to zero out the entire first

column we chose Q1 so that it does not fix the first row. When we apply the same

operation on the right, this ruins the column that we just zeroed out. (Although

this process may seem futile now, it actually does tend to decrease the size of the



111

subdiagonal entries. If we repeat it over and over again, the subdiagonal entries

will often converge to zero. That’s the idea behind the QR algorithm in Lab 17.)
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1·−→


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 ·QT1−−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


A Q1A Q1AQ

T
1

Instead, let’s try starting with a different Q1 that leaves the first row alone and

reflects the rest of the rows into the span of e2. This means that QT1 leaves the first

column alone.
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1·−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 ·QT1−−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


A Q1A Q1AQ

T
1

We now iterate through the matrix until we obtain

Q3Q2Q1AQ
T
1 Q

T
2 Q

T
3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


This is even more convenient when we are working with Hermitian matrices.

In that case, the matrices applied on the left zero out everything below the first

subdiagonal and the matrices applied on the right zero out everything above the

first superdiagonal, leaving us with a tridiagonal matrix. There are remarkably

efficient ways to solve systems involving tridiagonal matrices, so this is especially

convenient.

The pseudocode for computation of the Hessenberg form of a matrix is shown

in Algorithm 13.2. The exact inner workings of this algorithm are similar to the

inner workings of Algorithm 13.1.

Problem 2. Write a function hessenberg that computes the Hessenberg form

of a real-valued input matrix A. The function should return Q and H satis-

fying A = QTHQ, where Q is orthonormal and H has zeros below the first

subdiagonal.

The code for this algorithm will be fairly similar to the code for the QR

factorization using Householder reflections. This factorization technique will

be used later on in Lab 17. Notice what happens when you compute the

Hessenberg factorization of a Hermitian matrix.



112 Lab 13. QR Decomposition using Householder reflectors

Algorithm 13.2 Reduction to Hessenberg Form

1: procedure Hessenberg(G, u, l, p)

2: m,n← shape(A)

3: H ← copy(A)

4: Q← Im
5: for 0 ≤ k < n− 2 do

6: vk ← Hk+1:,k

7: vk0 ← vk0 + sign(vk0) ‖vk‖
8: vk ← vk/normvk
9: Hk+1:,k: ← Hk+1:,k: − 2vk(vHkHk+1:,k:)

10: H:,k+1: ← H:,k+1: − 2(H:,k+1:vk)vHk
11: Qk+1: ← Qk+1: − 2vk(vHkQk+1:)

12: return Q,R


