
Lab 20

Python: Computing with
Cython

Lab Objective: Use Cython to avoid the overhead of some parts of the Python

language.

For small computations, Python is reasonably fast for computing the solutions

to problems. However, for large computations, Python quickly becomes unable to

solve anything in a reasonable amount of time. You might ask, why use Python at

all if it’s so slow? The answer lies in the amount of time to write the code. Low-

level languages like C are renowned for their speed. These languages are compiled to

machine code that can run directly on a computer’s processor. When a C program

adds two numbers together, we have to be very specific about what two numbers are

added together. The computer can understand basic data types such as integers,

floats, and arrays. Python represents each of these data types using its own objects.

These are objects are generally fast and we don’t notice much the incurred overhead.

Over large calculations, the overhead of these objects is compounded and can slow

things down tremendously. In these cases, we need to be able to access the machine-

level data types for integers, floats, and strings for maximum efficiency. A common

way of doing this is to write slower portions of the code in a lower-level, compiled

language. This is usually accomplished by writing a C-extension for Python. A

C-extension is a module that can be used like a Python module, but is written in

C. This enables performance critical code to be executed as fast as possible in a

Python environment. Writing these C-extensions can often be tedious work.

In the strictest sense, Cython is an optimizing static compiler that accepts both

Python and Cython (an extended syntax of Python). As a language, it is essen-

tially just Python with some extra type declarations. It automates the

process of writing a Python C-extension and simplifies to the difficulty of writing

Python code. Cython is a superset of the Python language that enables you to call

C functions and declare C types on Python variables. The additional type declara-

tions of Cython allow it to generate highly optimized C code that will compile with

all major C/C++ compilers. Cython is especially useful for doing large amounts of

repetitive calculation, especially when that calculation involves the same data types

each time. Since Cython outputs C code, you can easily call any C function from

any point in your Python program.

147

148 Lab 20. Cython

Compiled to run
using Python objects

Run without
Python objects

Function call
to compiled

C code

Run
Python
Code

Cython
Compiler

C Compiler

Python Code

Python Virtual
Machine

Actual Hardware
C Code Compiled

Into a Python-Compatible
Extension Module

Cython Code

C Code Generated
From Cython Code

Figure 20.1: A diagram of how Cython compilation and calls to Cython functions

work. The path from using a Cython function in a Python file to the actual evalu-

ation is shown in red.

Cython has a more complex compilation process than Python and is not usually

run interactively. Cython code is usually written in a .pyx file. Such a file is then

compiled to C, and then the C is compiled to machine code. The resulting file is

a Python extension that can be imported from the Python interpreter. Many of

the same built in features, data types, and functions from Python work in Cython,

but keep in mind that too many calls to Python based functions may slow down

a Cython program. Figure 20.1 shows how a Cython file is compiled and how a

function call to a Cython module works. Regardless of what method you use to

compile a Cython file, this is more or less how it works.

There are a variety of ways to import Cython functions and classes into Python.

The standard way is to make a Python file that builds the C-extension module

in a given directory. If your module needs some sort of a complex compilation

step, you will need to do it this way. Instructions on how to do this can be found

at http://docs.cython.org/src/reference/compilation.html. The Sage and

IPython notebooks have seamless integrations with Cython via cell magic exten-

sions. In Sage, the cell magic is %cython. In the IPython notebook, you must first load

the extension with %load_ext cythonmagic. Then the first line of any cell containing

Cython code should be %%cython. More instructions on how to use IPython’s Cython

http://docs.cython.org/src/reference/compilation.html

149

magic and other related magic functions can be found in the IPython documenta-

tion. Cython also comes with a Python module, pyximport, that will automatically

generate, compile, and import most Cython files.

import pyximport

pyximport.install ()

Type Declarations

One of the easiest ways improve performance in Cython is declaring types on vari-

ables. While it is good practice to try and restrict variables to a single type (doing

so can improve performance in Python program), Python does not enforce strict

type checking. In fact, Python variables are dynamically typed. Any variable can

be any type and that type can change at any time. To allow this behavior, lots of

background checking must be performed. Cython allows us to declare a variable

of a certain type. If we declare a variable an integer, then an integer it will be for

the remainder of its life. These typed variables are not Python objects, but native

machine-types. In Python, you can iterate over a list, or use a generator object. In

C, for-loops are managed by indexing an integer and checking to see if it is within

a range of allowed values. This is a good example of a time when Python objects

can incur significant overhead. In Python to do a for-loop from 0 to 1000000 you

would do something like this:

for i in range (1000000):

pass

Doing a for-loop in this way creates a Python list of 1000000 objects and then

iterates through it. This can be very slow. It also uses a great deal of memory for

no particular reason We can improve on this by using the xrange function as follows:

for i in xrange (1000000):

pass

This skips making the list and makes a generator object which returns the values as

we need them. For large lists, this can give us a speedup of a factor of 3 or 4 times.

Because of this, the range function in Python 3 was changed to behave as the xrange

function of Python 2. However, xrange still generates a sequence of Python integers.

Cython will also execute this loop in the Python interpreter, but, if we pre-define

the type of our loop variable, Cython can bypass the use of Python objects and

run the for-loop in C using C integers. C integers are data types that have built-

in support on every CPU, so the operations involving the loop variable will now

run much faster. If we do this, we can completely relieve the Python interpreter of

executing the loop. We use a cdef statement to define i as a C integer type with this

syntax cdef <type> <name>. The empty for-loops above would be written in Cython

as follows:

cdef int i

for i in range (1000000):

pass

150 Lab 20. Cython

Because Cython has the extra type information regarding the loop, it can translate

the loop into C which is roughly 50 times faster than using the generator in Python.

Cython is able to do this by removing the overhead of working with Python integer

objects. Similar ideas also apply to repeated operations with other types of vari-

ables. For example, if you have an array of double precision floating point values

and you want to take the sum of all of them, your code will run faster if you declare

the types of all the variables you use before you do any computation. It is much

easier for your computer to perform arithmetic operations without having to infer

what datatypes are being used, what types need to be modified before computation

can actually be done, and which version of each operation needs to be performed.

Adding types unnecessarily may not actually result in an increase in performance. If

it is done poorly it can actually slow things down, but if you have a large number of

computations involving the same data type, adding type declarations should speed

things up considerably. Statements using cdef are also not allowed inside loops, so

you will have to declare all the variables you need before you use them.

Optimized Array Access

Often, we want to iterate over large arrays very quickly. In Python, the __getitem__

method (i.e. array access using []) of NumPy arrays is written for Python and

includes the corresponding overhead. As before, we would like to get around the

extra cost involved with Python objects. There are several ways this can be done.

If the array is an intermediate array in the program, it could possibly be replaced

entirely with a C array in Cython, but this may not interface nicely with Python

code for returning values, etc., so we would like to avoid that option. Fortunately,

Cython includes a direct interface to part of NumPy. NumPy arrays are already

implemented in C, so we can use this interface to work directly with NumPy arrays.

A typed NumPy array can be declared like this:

cimport numpy

...

cdef numpy.ndarray[dtype=double , ndim =2] X = ...

Or, more simply, as

from numpy cimport ndarray as ar

...

cdef ar[double , ndim =2] X = ...

The ndim argument defaults to one and can be omitted when declaring a one-

dimensional array, as in

from numpy cimport ndarray as ar

...

cdef ar[double] X = ...

Declaring our arrays like this allows us to access individual items in a NumPy array

at roughly the same speed we could access items in a C array. You can also use an

additional argument, mode, to specify whether the array is C-contiguous, Fortran-

contiguous, full, or strided (c, fortran, full, and strided respectively). An array is

151

said to be C contiguous when neighboring values of the last dimension are closest

together in memory. Fortran-contiguous arrays store data in the opposite ordering

with neighboring values in the first dimension closest together. For a 2D array,

C-contiguous ordering puts rows in continuous blocks of memory while Fortran-

contiguous stores by column. This matters most when you have to chose which way

you are iterating over the array. If your array is C-contiguous it is best to have

your fastest varying indices run along the rows instead of along the columns. The

syntax to declare arrays like this is:

from numpy cimport ndarray as ar

...

#C-contiguous

cdef ar[double , ndim=2, mode='c'] X = ...

Specifying the mode of the array does not add any extra speed if the array is already

laid out in the desired way, but it will raise an error if the array declared is not

arranged in the correct way. We get all the convenience of using a NumPy array

and can still use the different array operations, but we also get to access single items

in the array more quickly. The catch is that this fast array access only works when

we are accessing the array one item at a time. Generally we can get around the

slicing, but if we need to pass around NumPy array slices between the functions

in the module, there can be a significant speed loss (these array slices are Python

objects). Cython has a memoryview object designed for this. Memoryviews support

the same fast indexing as the NumPy arrays and slices of memoryviews continue to

support the optimized buffer access. They are useful when you need to pass array

slices between functions in your module. They also work especially well when used in

inline functions, and the corresponding syntax is relatively simple. However, passing

a memoryview object to a NumPy function becomes slower as the memoryview has

to be converted to a NumPy array. If you need to use NumPy array functions and

pass memoryviews between functions you can define a memoryview object that views

the same data as your array. If for some reason you need to convert a memoryview

to a NumPy array, you can use the np.asarray function, but that, as always, comes

at a cost. The syntax to use when declaring a memoryview object from an array X

is:

cdef double [:,:] Xview = X

If we know more about the memory layout of X we can also add that to the type

declaration. Knowing that X is C-contiguous (which is normally true for a newly

initialized NumPy array) the following works:

cdef double [: ,::1] Xview = X

When the array is Fortran-contiguous we can use the following:

cdef double [::1 ,:] Xview = X

It is also worth noting that many of the array operations in Cython can also be

done using pointers. The speed is roughly the same as with the optimized array

lookups, but the code is often much less readable. Cython does not allow you to

dereference a pointer using the * syntax. It requires square brackets [] instead.

152 Lab 20. Cython

Compiler Directives

There are also some compiler directives you can pass to the Cython compiler which

will speed up array access. By default, Cython checks to see if the indices used

in array accesses are within the bounds of the array. Cython also allows negative

indexing the same way Python does. These features incur some performance loss

and may be removed once a program has been carefully debugged. Compiler direc-

tives in Cython can be included as comments or as function decorators. Directives

included in comments will apply to the whole file, while function decorators will

only apply to the function or method immediately following the decorators. The

comments to turn off bounds checking and negative indices are, respectively:

#cython: boundscheck=False

#cython: wraparound=False

To use the function decorators you must first include the cython module. This is

done by including the line cimport cython in your import statements. The decorators

are:

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

When using these compiler directives, you must be absolutely certain that you are

not using negative indices or accessing any array out of bounds. Doing so could

access and possibly modify some portion of memory that has not been allocated

as part of an array. That can cause all kinds of trouble. It is usually best to only

include these directives after you have finished debugging your program.

Cython has several other useful compiler directives. One that you should be

aware of is the cdivision option. In Python, the % operator returns a number with

the sign of the second argument, while C keeps the sign of the first argument. In

Python, -1%5 returns 4, while in C, this returns -1. Cython, by default, will behave

like Python. Cython will also check for zero division and raise a ZeroDivisionError

when necessary. Again, this does cost a little, so if you are working with integer

division and want a slight speedup, you can set cdivision to True in the same way you

would change the boundscheck and wraparound options. This will make the % operator

behave like it would in C and turn off the check for zero division.

Functions in Cython

As you may expect, adding type declarations can also apply to function arguments

in Cython. You can optionally declare the types of the inputs for the function to

ensure that it receives the right arguments. The syntax is what you would probably

expect.

from numpy cimport ndarray as ar

def myfunction(ar[double] X, int n, double h, items):

...

Notice that we did not have to include type declarations for all of the arguments.

The untyped arguments are expected to be Python objects with the corresponding

153

methods. Computations involving these untyped arguments will use Python instead

of C. Keyword arguments are also supported.

Cython also allows you to make C functions that are only callable within the

extension library you are currently building. These functions are declared using the

same syntax as you would in Python except that you replace the keyword def with

cdef. These functions can be called within the module you are building, but are not

actually imported into your namespace when you load the Cython module.

Cython also allows you to declare functions using the cpdef statement. These

functions are C functions that, when compiled, are also wrapped as Python functions

so they can be called in Python. This allows you to do the function calls within the

module in C, while still making a Python wrapper for your function available for

use outside the module itself. You can specify the return type for functions declared

using cdef and cpdef like you would a variable, for example:

from numpy cimport ndarray as ar

cpdef int myfunction(ar[double] X, int n, double h, items):

...

This will make two functions, one will be a C function which will return an integer

value. The other will be a Python wrapper for the C function. The Python-

accessible function will accept all the same arguments and return the same value,

but it will be callable from Python.

Some Examples

To illustrate how to use Cython we will take the dot product of two one-dimensional

arrays. This would be done in Python like this:

def pydot(A, B):

tot = 0.

for i in xrange(A.size):

tot += A[i] * b[i]

return tot

Assuming we are using the IPython notebook we can define and compile a cython

function to do this by evaluating the following cells:

%load_ext cythonmagic

%% cython

from numpy cimport ndarray as ar

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

def cydot(ar[double] A, ar[double] B):

cdef double tot=0.

cdef int i

for i in xrange(A.size):

tot += A[i] * B[i]

return tot

154 Lab 20. Cython

Figure 20.2: The times of the pure Python dot-product, the Cython based dot-

product, and the dot-product built into NumPy which links to the Intel MKL. As

you can see, the Cython version can run nearly as fast as the version built into

NumPy.

We can then time our function by evaluating the following cell

from numpy.random import rand

n = 10000000

A = rand(n)

B = rand(n)

%timeit cydot(A, B)

Figure 20.2 compares the timings of our new dot-product function with other

possible implementations.

Now we will do a more advanced example using memoryviews. We will write

functions which, given a two-dimensional array A, make a new array B such that

B[i,j] = dot(A[i],A[j]).

Here’s a purely iteration-based solution in Python:

def pyrowdot(A):

B = np.empty ((A.shape [0], A.shape [0]))

for i in xrange(A.shape [0]):

for j in xrange(i):

temp = pydot(A[i], A[j])

B[i,j] = temp

B[i,i] = pydot(A[i],A[i])

for i in xrange(A.shape [0]):

155

for j in xrange(i+1,A.shape [0]):

B[i,j] = B[j,i]

return B

To do this same sort of thing in Cython we can compile the following file:

import numpy as np

from numpy cimport ndarray as ar

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

cpdef inline cydot(double [:] A, double [:] B, int n):

cdef double tot=0.

cdef int i

for i in xrange(n):

tot += A[i] * B[i]

return tot

@cython.boundscheck(False)

@cython.wraparound(False)

def cyrowdot(ar[double , ndim =2] A):

cdef ar[double , ndim =2] B = np.empty((A.shape[0], A.shape [0]))

cdef double [:,:] Aview = A

cdef double temp

cdef int i, j, n=A.shape [0]

for i in xrange(n):

for j in xrange(i):

temp = cydot(Aview[i], Aview[j], n)

B[i,j] = temp

B[i,i] = cydot(Aview[i], Aview[i], n)

for i in xrange(n):

for j in xrange(i+1,n):

B[i,j] = B[j,i]

return B

This can also be done in NumPy by running A.dot(A.T). The timings of the

Python and Cython versions of this function are shown in Figure 20.3.

Problem 1. Write a function in Python which takes the sum of a one-

dimensional array by iterating over it.

Write three Cython versions: one using a typed for-loop to iterate over

the array, another using a typed for-loop and optimized array access, and

another using a typed for-loop, optimized array access, and special compiler

directives to further speed up array access.

Compare the speed of the functions you just wrote, the builtin sum()

function and NumPy’s sum() function. What do you see? Notice that when

you type your variables in ways that don’t work well, you may actually slow

things down.

156 Lab 20. Cython

Figure 20.3: The times of the Python, Cython, and NumPy (with MKL) versions

of the rowdot function that we used as an example. The arrays used for testing were

n× 3 where n is shown along the horizontal axis.

Using C Functions and Data Types in Cython

Cython also allows you to easily interface between Python and C. It comes with

many of the basic math functions from the math library already implemented.

These functions can be imported using something along the lines of:

from libc.math cimport fabs , sin , cos , ...

Notice that we imported fabs. This is the absolute value function from C, but it is

imported as fabs so that it does not overwrite Python’s built in abs function. min and

max are also renamed the same way. These functions are good for large amounts of

computation when we don’t want to deal with the overhead from Python objects.

Cython also allows you to import other C functions and libraries. It can make

wrapping these libraries much easier.

Problem 2. In an earlier lab, you wrote a function to compute the LU

decomposition of a nonsingular matrix. Port it to Cython. Use the typed for-

loops, typed arrays (or memoryviews), and the additional compiler directives

in your optimized solution. You may assume, in this case, that you are only

dealing with real arrays of double precision floating point numbers.

157

Compare the speed of your new solution to the speed of the Python

based version you wrote earlier. For testing the speed of your solutions, you

can generate large, symmetric, positive-definite arrays by first generating a

random array of floating point values, then multiplying it by its transpose

(here we mean matrix multiplication using np.dot()).

Problem 3. The code below defines a Python function which takes a matrix

to the nth power. Port it to Cython. Write three different versions: one using

typed arrays, another using typed arrays with the special compiler directives,

and another using typed arrays with corresponding typed memoryviews of

their corresponding data and the compiler directives.

import numpy as np

def mymult(X, power):

prod = np.empty_like(X)

prod [:] = X

temparr = np.empty_like(X[0])

size = X.shape [0]

for n in xrange(1, power):

for i in xrange(size):

for j in xrange(size):

tot = 0.

for k in xrange(size):

tot += prod[i,k] * X[k,j]

temparr[j] = tot

prod[i] = temparr

return prod

Compare the speed of the Python function, the three functions you just

wrote, and the np.dot() function. The NumPy function should be faster, but

only by an order of magnitude or so. NumPy and SciPy do this computation

and other computations by calling BLAS and LAPACK, very optimized For-

tran libraries for linear algebra. This is probably one of the best-optimized

portions of NumPy and Scipy. The difference in performance should be par-

ticularly clear in this case because of the high order of complexity of the

algorithm.

It is important to recognize that the choice of algorithm and fast implementa-

tion can both drastically affect the speed of your code. A simple example is the

tridiagonal algorithm (also called the Thomas Algorithm) which is used to solve

158 Lab 20. Cython

systems of the form:

b0 c0 0 0 0 · · · · · · 0

a0 b1 c1 0 0 · · · · · · 0

0 a1 b2 c2 0 · · · · · · 0

0 0 a2 b3 c3 · · · · · · 0
...

...
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . . cn−1

0 0 0 0 0 · · · an−1 bn

d0

d1

d2

d3

...

...

dn

=

x0

x1

x2

x3

...

...

xn

The following Python code solves this system. Notice that x and c are modified in

place. The final result is stored in x, and c is used to store temporary values.

def tridiag(a, b, c, x):

#note: overrides c and x

size = x.size

temp = 0.

c[0] = c[0] / b[0]

x[0] = x[0] / b[0]

for n in range(size -2):

temp = 1. / (b[n+1] - a[n]*c[n])

c[n+1] *= temp

x[n+1] = (x[n+1] - a[n]*x[n]) * temp

x[size -1] = (x[size -1] - a[size -2]*x[size -2]) / (b[size -1] - a[←↩
size -2]*c[size -2])

for n in range(b.size -2, -1, -1):

x[n] = x[n] - c[n] * x[n+1]

Problem 4. Port the above code to Cython using typed for-loops, optimized

array accesses and the special compiler directives. Compare the speed of your

new function with the pure Python version given above. Now compare the

speed of both of these functions with the solve() function in scipy.linalg.

For your first two functions a good starting point for computation will be to

consider 1000000×1000000 sized systems and then adjust the size so you get

good results on your particular machine. When testing the SciPy algorithm,

you will probably want to start with systems involving a 1000× 1000 matrix

and then go up from there. Keep in mind that the SciPy function is heavily

optimized, but that it uses a much more general algorithm. What does this

example tell you about the relationship between good implementation and

proper choice of algorithm? In this case, the LU decomposition method used

by the SciPy function has complexity O(n3), while the tridiagonal algorithm

is O(n).

