
Lab 10

Eigenvalue Solvers And
Markov Chains

Lab Objective: Implement the power method and QR algorithm for finding

eigenvalues, and use the power method to find the stationary distributions of Markov

chains.

Computing eigenvalues

The eigenvalues of a matrix are the roots of its characteristic polynomial. Thus, to

find the eigenvalues of an n × n matrix, we must compute the roots of a degree-n

polynomial. This is easy for small n. For example, if n = 2 the quadratic equation

can be used to find the eigenvalues. However, Abel’s Impossibility Theorem says

that no such formula exists for the roots of a polynomial of degree 5 or larger.

Theorem 10.1 (Abel’s Impossibility Theorem). There is no general algebraic

solution for solving a polynomial equation of degree n ≥ 5.

Thus, it is impossible to write an algorithm that will exactly find the eigenvalues

of an arbitrary matrix. (If we could write such an algorithm, we could also use it to

find the roots of polynomials, contradicting Abel’s theorem.) This is a significant

result. It means that we must find eigenvalues with iterative methods, methods that

generate sequences of approximate values converging to the true value.

The power method

There are many iterative methods for finding eigenvalues. The power method finds

an eigenvector corresponding to the dominant eigenvalue of a matrix, if such an

eigenvalue exists. The dominant eigenvalue of a matrix is the unique eigenvalue of

greatest magnitude.

To use the power method on a matrix A, begin by choosing a vector x0 such

that ‖x0‖ = 1. Then recursively define

xk+1 =
Axk
‖Axk‖

.

109

110 Lab 10. Eigenvalue Solvers And Markov Chains

If

• A has a dominant eigenvalue λ, and

• the projection of x0 into the subspace spanned by the eigenvectors correspond-

ing to λ is nonzero,

then the vectors x0,x1,x2, . . . will converge to an eigenvector of A corresponding

to λ. (See [TODO: ref textbook] for a proof when A is semisimple, or [TODO: ref

something else] for a proof in the general case.)

If all entries of A are positive, then A will always have a dominant eigenvalue

(see [TODO: ref something!] for a proof). There is no way to guarantee that the

second condition is met, but if we choose x0 randomly, it will almost always satisfy

this condition.

Once you know that x is an eigenvector of A, the corresponding eigenvalue is

equal to the Raleigh quotient

λ =
〈Ax, x〉
‖x‖2

.

Problem 1. Write a function that implements the power method to com-

pute an eigenvector. Your function should

1. Accept a matrix and a tolerance tol.

2. Start with a random vector.

3. Use the 2-norm wherever a norm is needed (use la.norm()).

4. Repeat the power method until the vector changes by less than the

tolerance. In mathematical notation, you are defining x0, x1, . . . xk,

and your function should stop when ‖xk+1 − xk‖ < tol.

5. Return the found eigenvector and the corresponding eigenvalue (use

np.inner()).

Test your function on positive matrices.

The QR algorithm

The disadvantage of the power method is that it only finds the largest eigenvector

and a corresponding eigenvalue. To use the QR algorithm, let A0 = A. Then let

QkRk be the QR decomposition of Ak, and recursively define

Ak+1 = RkQk.

111

Then A0, A1, A2, . . . will converge to a matrix of the form

S =

S1 ∗ · · · ∗

0 S2
. . .

...
...

. . .
. . . ∗

0 · · · 0 Sm

where Si is a 1 × 1 or 2 × 2 matrix.1 The eigenvalues of A are the eigenvalues of

the Si.

This algorithm works for three reasons. First,

Q−1
k AkQk = Q−1

k (QkRk)Qk = (Q−1
k Qk)(RkQk) = Ak+1,

so Ak is similar to Ak+1. Because similar matrices have the same eigenvalues, Ak
has the same eigenvalues as A. Second, each iteration of the algorithm transfers

some of the “mass” from the lower to the upper triangle. This is what makes

A0, A1, A2, . . . converge to a matrix S which has the described form. Finally, since

S is block upper triangular, its eigenvalues are just the eigenvalues of its diagonal

blocks (the Si).

A 2×2 block will occur in S when A is real but has complex eigenvalues. In this

case, the complex eigenvalues occur in conjugate pairs, each pair corresponding to

a 2× 2 block on the diagonal of S.

Hessenberg preconditioning

Often, we “precondition” a matrix by putting it in upper Hessenberg form before

passing it to the QR algorithm. This is always possible because every matrix is

similar to an upper Hessenberg matrix (see Lab ??). Hessenberg preconditioning is

done for two reasons.

First, the QR algorithm converges much faster on upper Hessenberg matrices

because they are already close to triangular matrices.

Second, an iteration of the QR algorithm can be computed in O(n2) time on an

upper Hessenberg matrix, as opposed to O(n3) time on a regular matrix. This is

because so many entries of an upper Hessenberg matrix are 0. If we apply the QR

algorithm to an upper Hessenberg matrix H, then this speed-up happens in each

iteration of the algorithm, since if H = QR is the QR decomposition of H then RQ

is also upper Hessenberg.

Problem 2. Write a function that implements the QR algorithm with Hes-

senberg preconditioning as described above. Do this as follows.

1. Accept a matrix A, a number of iterations niter, and a tolerance tol

2. Put A in Hessenberg form using la.hessenberg().

3. Compute the matrix S by performing the QR algorithm niter times.

1If S is upper triangular (i.e., all Si are 1×1 matrices), then S is the Schur form of A. If some
Si are 2× 2 matrices, then S is the real Schur form of A.

112 Lab 10. Eigenvalue Solvers And Markov Chains

Use the function la.qr() to compute the QR decomposition.

4. Iterate through the diagonal of S from top to bottom to compute its

eigenvalues. For each diagonal entry,

(a) If this is the last diagonal entry, then it is an eigenvalue.

(b) If the entry below this one has absolute value less than tol, assume

this is a 1× 1 block. Then the current entry is an eigenvalue.

(c) Otherwise, the current entry is at the top left corner of a 2 ×
2 block. Calculate the eigenvalues of this block. Use the sqrt

function from the scimath library to find the square root of a

negative number. You can import this library with the line from

numpy.lib import scimath.

5. Return the (approximate) eigenvalues of A.

You can check your function on the matrix
4 12 17 −2

−5.5 −30.5 −45.5 9.5

3. 20. 30. −6.

1.5 1.5 1.5 1.5

 ,

which has eigenvalues 1+2i, 1−2i, 3, and 0. You can also check your function

on random matrices against la.eig().

The QR algorithm as described in this lab is not often used. Instead, modern

computer packages use the implicit QR algorithm, which is an improved version of

the QR algorithm.

Lastly, iterative methods besides the power method and QR method are often

used to find eigenvalues. Arnoldi iteration is similar to the QR algorithm but ex-

ploits sparsity. Other methods include the Jacobi method and the Rayleigh quotient

method.

Markov chains (application of the power method)

A Markov chain is a collection of states with specified probabilities for transitioning

from one state to another. Markov chains are characterized by the fact that future

behavior of the system depends only on its current state.

This lab is a very brief introduction to Markov chains. To learn more, see

[TODO: ref something].

An example

Suppose Fredo the frog is jumping between the three lily pads 1, 2, and 3. These

three pads are the possible states of the system, and the lily pad on which Fredo is

presently sitting is the current state. If Fredo is on lily pad 1 and jumps, there is

113

1

2 3

1
4

1
2

1
3

1
2

1
2

1
2

1
4

1
6 0

Figure 10.1: Transition diagram for Fredo the Frog.

a 25% chance that it will land back on lily pad 1, a 25% chance that it will land

on lily pad 2, and a 50% chance that it will land on lily pad 3. These probabilities

are the transition probabilities. Figure 10.1 is a transition diagram that depicts all

transition probabilities.

We can convert our transition diagram into a transition matrix The (i, j)-entry

of the transition matrix is the probability that Fredo jumps from lily pad j to lily

pad i. Fredo’s transition matrix is

A =

1/4 1/2 1/2

1/4 1/6 1/2

1/2 1/3 0

 .

At any time, the chances that Fredo is on each lily pad is encoded by a state

distribution vector x = (x1, x2, x3)T , where xi is the probability that Fredo is on lily

pad i. For x to be a state distribution vector, we require xi ≥ 0 and ‖x‖1 = 1 (recall

that the 1-norm of a column vector is the sum of the magnitudes of its entries).

Then Ax will be another state distribution vector, which tells us the probability

that Fredo is on each lily pad after one jump.

Thus, we can use Fredo’s transition matrix to find where he will be after k

jumps. In fact, the (i, j)-entry of Ak is the probability that Fredo goes from lily

pad j to lily pad i in k jumps. In our case,

A2 ≈

0.4375 0.3750 0.3750

0.3542 0.3194 0.2083

0.2083 0.3056 0.4167

 .

Therefore, if Fredo starts on lily pad 1, there is a 43.75% chance it will still be on lily

pad 1 after two jumps. Maybe Fredo jumped from 1 to 1 to 1, denoted 1→ 1→ 1,

or perhaps it jumped to one of the other lily pads and then back again, that is,

either 1→ 2→ 1 or 1→ 3→ 1.

In addition, there is a 35.42% chance Fredo will be on lily pad 2 and a 20.83%

chance that it will be on lily pad 3. We can type our transition matrix into Python

and see where Fredo is likely to be after any number of jumps.

114 Lab 10. Eigenvalue Solvers And Markov Chains

The 1.'s in the numerator force floating point division.

>>> A = np.array([[1./4,1./2,1./2],[1./4,1./6,1./2],[1./2,1./3,0]])

>>> np.linalg.matrix_power(A,10)

array([[0.40000057, 0.39999962, 0.39999962],

[0.30002369, 0.29999268, 0.29997574],

[0.29997574, 0.3000077 , 0.30002464]])

In fact, as we take higher and higher powers of A, it appears that

lim
k→∞

Ak =

0.4 0.4 0.4

0.3 0.3 0.3

0.3 0.3 0.3

 .

This means that Fredo’s state distribution approaches (0.4, 0.3, 0.3)T after many

jumps, regardless of his initial state distribution.

Moreover, suppose Fredo’s initial state distribution is (0.4, 0.3, 0.3)T . We can

use Python to compute his state distribution after 1 jump.

>>> A.dot(np.array([0.4,0.3,0.3]))

array([0.4, 0.3, 0.3])

Fredo’s state distribution after a jump stays “fixed.” We call the vector (0.4, 0.3, 0.3)T

a stable fixed point for Fredo.

General Markov chains

Let us generalize this example. A Markov chain is a collection of states with the

probabilities that we will move from one state to another. These transition proba-

bilities are encoded in a transition matrix, whose (i− j)-entry is the probability of

moving from state j to state i. Each column of such a matrix will necessarily have

entries that sum to 1.

Let A be the transition matrix of a Markov chain. Then a state distribution

vector x is a stable fixed point if Ax = x. So x is a stable fixed point if and only if

x is a positive unit eigenvector of A corresponding to the eigenvalue 1.

Every Markov chain has at least one stable fixed point. If in addition we assume

some power Ak of A has all positive (nonzero) entries, then the stable fixed point

is unique. In this case, Ak will converge to a matrix whose columns are all equal to

the unique stable fixed point.

Note that Fredo’s transition matrix does not have positive entries, but its square

does. So Fredo has the unique stable fixed point (0.4, 0.3, 0.3)T .

Finding stable fixed points

Calculating stable fixed points is an important problem in Markov chain analysis.

Suppose a Markov chain has a transition matrix A such that Ak has strictly positive

entries for some k. Then the Perron-Frobenius theorem says that 1 is the unique

eigenvalue of A of largest magnitude, and the corresponding eigenvector is unique.

This means that we can use the power method to find the unique stable fixed point

of A.

115

Let us look at what the power method is doing in the example of Fredo the frog.

We will use the 1-norm.

Suppose we know Fredo starts on lily pad 1. Then we begin with the state

distribution vector

x0 =

1

0

0

because we know for certainty (100%) that Fredo is in the first state. The next

iteration of the power method is x1 = Ax0/‖Ax0‖1. But since ‖Ax0‖1 = 1, this is

just

x1 = Ax0 =

0.25

0.25

0.50

 ,
which is exactly Fredo’s state distribution after 1 jump. After two jumps, Fredo’s

state distribution is

x2 = Ax1 = A2x0 =

0.4375

0.3542

0.2083

 ,
which is also the second iteration of the power method. After a large number of

jumps, we have

xn = Axn−1 = · · · = Anx0 ≈

0.4

0.3

0.3

 .
Thus, the limiting vector of the power method is exactly the unique stable fixed

point of the Markov chain.

A final example

Consider the Markov chain with transition matrix

A =

0.5 0.3 0.4

0.2 0.2 0.3

0.3 0.5 0.3

 .

Because all entries of A are positive, the Markov chain has a unique stable fixed

point. We could find this fixed point with the power method as outlined above, or

we can do it by computing eigenvalues and eigenvectors in Python, as shown below.

>>> from scipy import linalg as la

>>> A = np.array([[.5,.3,.4],[.2,.2,.3],[.3,.5,.3]])

>>> evals, evecs = la.eig(A)

>>> evals

array([1. , 0.14142136, -0.14142136])

We are interested in the eigenvalue 1, which is the first one outputted in this case.

The corresponding eigenvector is the first column of evecs; let us call it x.

>>> x = evecs[:,0]

116 Lab 10. Eigenvalue Solvers And Markov Chains

Now, the one-norm of x will probably not be 1. To make it 1, we divide by the

one-norm of x.

>>>x = x/np.sum(x)

Finally, let us check that x is a stable fixed point of A. There are two things to

check.

Check Ax = x

>>> np.allclose(A.dot(x), x)

True

Check ||x||_1 = 1

>>> np.sum(x)==1

True

Problem 3. Write a function that accepts as input a transition matrix, a

vector representing the initial state, and a number of iterations niter. Your

function should

1. Assume that the input matrix has a unique stable fixed point.

2. Calculate the unique stable fixed point by computing eigenvectors and

eigenvalues in Python.

3. Return the current state of the Markov chain after niter iterations and

the stable fixed point.

Problem 4. Suppose a basketball player’s success at shooting free throws

can be described with the following Markov chain

A =

(
.75 .50

.25 .50

)
where the first state corresponds to success and the second state to failure.

Use the function you wrote in Problem 3 to answer the following questions.

1. If the player makes his first free throw, what is the probability that he

also makes his third one? (That is, what is the probability that this

system starts in state 1 and is still in state 1 after 3 steps?)

2. What is the player’s average free throw percentage? (This is equal to

the success-component of the stable fixed point.)

