
Lab 11

Image Compression
(SVD)

Lab Objective: Explore the SVD as a method of image compression

In this lab, we are going to explore how the SVD can be used to compress image

data. Recall that the SVD is a decomposition of an m× n matrix A of rank r into

the product A = UΣV H , where U and V are unitary matrices having dimensions

m×m and n× n, respectively, and Σ is an m× n diagonal matrix.

Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the singular values of A. Upon closer inspection,

we see that we can write

U =
(
U1 U2

)
, Σ =

(
Σr 0

0 0

)
, V =

(
V1 V2

)
,

where U1 and V1 have dimensions m × r and n × r respectively and Σr is the

r × r diagonal matrix of (nonzero) singular values. Multiplying this out yields the

reduced form of the SVD

A =
(
U1 U2

)(Σr 0

0 0

)(
V H1
V H2

)
= U1ΣrV

H
1

Low rank data storage

If the rank of a given matrix is significantly smaller than its dimensions, the reduced

form of the SVD offers a way to store A with less memory. Without the SVD, an

m× n matrix requires storing mn values. By decomposing the original matrix into

the SVD reduced form, U1, Σr and V1 together require mr + r + nr values. Thus

if r is much smaller than both m and n, we can obtain considerable efficiency. For

example, suppose m = 100, n = 200 and r = 20. Then the original matrix would

require storing 20, 000 values whereas the reduces form of the SVD only requires

storing 6020 values.

117



118 Lab 11. SVD

(a) NGC 3603 (Hubble Space Telescope). (b) Singular values from greatest to smallest.

Figure 11.1: An image and its singular values.

Low rank approximation

The reduced form of the SVD also provides a way to approximate a matrix with

another one of lower rank. This idea is used in many areas of applied mathemat-

ics including signal processing, statistics, semantic indexing (search engines), and

control theory. If we are given a matrix A of rank r, we can find an approximate

matrix Â of rank s < r by taking the SVD of A and setting all of its singular values

after σs to zero, that is,

ΣÂ = diag(σ1, σ2, . . . , σs, 0, . . . , 0)

and then multiplying the matrix back together again. The more singular values

we keep, the closer our approximation is to A. The number of singular values we

decide to preserve depends on how close of an approximation we need and what

our size requirements are for U1, ΣÂ, and V1. Try plotting the the singular values.

In Figure 11.1 we present an image and its singular values. Matrix rank is on the

x-axis and the singular values are the y-axis. Note that SVD orders the singular

values from greatest to least. The greatest singular values contribute most to the

image while the smallest singular values hardly contribute anything to the final

approximation. By looking at the graph in Figure 11.1b we can have a rough idea

of how many singular values we need to preserve to have a good approximation of

A. The matrix rank of the image below is 670. However, as the plot shows, we

could easily approximate the image using only the first half of the singular values.

In Figure 11.2, we can see different rank approximations of the image in Figure

11.1.

The scipy.linalg module has a convenient method to calculate the SVD of a

given matrix. We can use this method to create a lower-rank approximation of a

given matrix. Execute the following code.

>>> import numpy as np



119

(a) Rank 1 approximation (b) Rank 14 approximation

(c) Rank 27 approximation (d) Rank 40 approximation

Figure 11.2: Different rank approximations for SVD based compression. Notice

that higher rank is needed to resolve finer detail.

>>> from scipy.linalg import svd, norm

>>> A = np.array([[1,1,3,4], [5,4,3,7], [9,10,10,12], [13,14,15,16], ←↩
[17,18,19,20]])

>>> U,s,Vt = svd(A, full_matrices=False)

In that last line of code, we included the keyword argument full_matrices=False to

calculate the reduced SVD rather than the full SVD. The arrays U and Vt correspond

to the matrices U1 and V H1 discussed earlier in the lab. The array s simply gives the

nonzero singular values of the matrix A, and we can find the rank of A by inspecting

the number of entries in s (in this example, we have a rank 4 matrix).

Next, we calculate a rank 3 approximation. Instead of setting the smallest

singular value to 0, we simply omit it from the calculation. Note that we also omit



120 Lab 11. SVD

the last column of U and last row of Vt, as they correspond to the smallest eigenvalue.

>>> S = np.diag(s[:-1])

>>> Ahat = U[:,:-1].dot(S).dot(Vt[:-1,:])

>>> norm(A-Ahat)

Note that Â is “close” to the original matrix A, but that its rank is 3 instead of 4.

More precisely, Â is the best rank 3 approximation of A with respect to both the

induced 2-norm and the Frobenius norm.

Problem 1. Write a function svd_approx that takes as input a matrix A and

a positive integer k and returns the best rank k approximation to A with

respect to the induced 2-norm.

Application to Imaging

Enter the following into IPython (note that any image you might have will work):

>>> import matplotlib.pyplot as plt

>>> X = plt.imread('fingerprint.png')[:,:,0].astype(float)
>>> X.nbytes #number of bytes needed to store X

>>> plt.imshow(X)

>>> plt.show()

Computing the SVD of your image is simple. Remember to make the singular values

a diagonal matrix before multiplying.

>>> U,s,Vt = svd(X, full_matrices=False)

>>> S = sp.diag(s)

In the next code block, n represents the desired rank of the output.

>>> n = 50

>>> u1, s1, vt1 = U[:,0:n], S[0:n,0:n], Vt[0:n,:]

>>> Xhat = u1.dot(s1).dot(vt1)

>>> (u1.nbytes + np.diag(s1).nbytes + vt1.nbytes) - X.nbytes #should be ←↩
negative

>>> plt.imshow(Xhat)

>>> plt.show()

Recall that the error between the best rank s approximation Âs to A with respect

to the induced 2-norm is given by

‖A− Âs‖2 = σs+1,

where σs+1 is the (s+ 1)-th singular value of A.



121

Problem 2. Sometimes there is not enough available bandwidth to transmit

a full resolution photograph. You aim to reduce the amount of data that

needs to be transmitted from a remote location such that loss of image detail

is minimal, but the amount of data that needs to be sent has reduced as much

as possible. Write a function lowest_rank_approx that takes as input a matrix

A and a positive number e and returns the lowest rank approximation of A

with error less than e (with respect to the induced 2-norm).


