
Lab 12

Correlation and
Covariance

Lab Objective: Explore applications of inner product spaces to topics in statis-

tics.

Shifting Data by the Mean

When analyzing numerical data, it is often useful to transform the data to have

an average value of 0. This process, which we call shifting by the mean, is easily

accomplished by simply subtracting the mean of the data from each value. The

resulting shifted data now shows how each data point deviates from the mean. This

form makes it easier to spot outliers, judge the spread of the data, and compare

with other data sets.

Consider Table 12.1 representing students scores in a class.

We can shift our data set by subtracting each column by its average value. This

makes it so that the average of each column is zero. If W represents the matrix of

scores, the following Python command will shift each column by the mean.

>>> W = np.array([[89, 91, 77, 75],

[67, 72, 76, 66],

[72, 77, 69, 70],

[56, 60, 55, 61],

[92, 98, 89, 86],

[83, 88, 90, 84],

[45, 60, 55, 48]])

>>> column_means = W.mean(axis=0)

>>> X = W - column_means

>>> X

array([[17., 13., 4., 5.],

[-5., -6., 3., -4.],

[0., -1., -4., 0.],

[-16., -18., -18., -9.],

[20., 20., 16., 16.],

[11., 10., 17., 14.],

[-27., -18., -18., -22.]])

123

124 Lab 12. Correlation and Covariance

Student Homework Exam 1 Exam 2 Final

S1 89 91 77 75

S2 67 72 76 66

S3 72 77 69 70

S4 56 60 55 61

S5 92 98 89 86

S6 83 88 90 84

S7 45 60 55 48

Average 72 78 73 70

Figure 12.1: Homework and exam scores for 7 students in a class.

Once we have subtracted out the mean from a vector, it is a simple task to

compute its variance and standard deviation. The variance of an n-dimensional

vector v, often denoted σ2, is defined by the formula

σ2 =
1

n

n∑
i=1

(vi − µ)2,

where µ is the mean of v. The standard deviation of v is simply σ, i.e. the square

root of the variance. These quantities measure the spread of the entries of the

vector. When all of the entries are clustered closely around the mean, the variance

is small. See Figure 12.2 for an illustration of variance and mean-shifted data.

(Note: unbiased variance is a quantity closely related to variance, but defined

slightly differently. It comes into play in particular for small datasets or vectors.

Further discussion is beyond the scope of this lab, but be aware that there is more

than one type of variance.)

Calculating the variance and the standard deviation in Python is straight for-

ward. Given the shifted data X, we simply square each entry, sum along the

columns, and divide by the number of rows to obtain the variance. Take the square

root of the result to get the standard deviation.

>>> var = (X**2).sum(axis=0)/X.shape[0]

>>> var

array([260. , 193.42857, 176.28571, 151.14285])

>>> std = np.sqrt(var)

>>> std

array([16.124515, 13.907860, 13.277263, 12.294017])

Observe that the scores for the homework exhibited the largest amount of spread.

As with many things in Python, there is an even shorter, more convenient way

to calculate these quantities. We may calculate the variance and standard deviation

of the columns directly from W , without having to shift by the mean.

>>> W.var(axis = 0)

array([260. , 193.42857, 176.28571, 151.14285])

>>> W.std(axis = 0)

array([16.124515, 13.907860, 13.277263, 12.294017])

125

Figure 12.2: On the left, the red values come from a vector with relatively high

variance, and the blue values come from a vector with relatively low variance. On

the right, the green values have been shifted by the mean from the blue values.

Problem 1. Import the dataset contained in the weight_age_fat.txt file. The

first row is a header, and contains the names of each column, but no actual

data. There are five columns, but the first two do not contain any data of

interest. The last three columns contain data on the weight (in kilograms),

age (in years), and blood fat content of 25 individuals. Distinct data entries

are separated by whitespace.

Write a function shiftByMean that shifts the columns of an input array

by their respective means, and returns the result. Next, write a function

computeVariance that calculates and returns the variance of each column of an

input array. Finally, write a function reportStDev that accepts no parameters

and returns nothing, and simply contains a print statement that prints out

the name of the column with the smallest standard deviation as well as the

numerical value of its standard deviation.

126 Lab 12. Correlation and Covariance

The Inner Product and Angles Formula

Inner products give information about lengths of vectors and angles between vectors.

Recall that the standard inner product on Rn between vectors v and u is given by

〈v, u〉 = vTu =

n∑
i=1

viui.

We can take advantage of convenient syntax in NumPy to quickly calculate the

inner product between two vectors:

>>> v = np.array([1., -2., 4.])

>>> u = np.array([2., 3., -1.])

>>> v.dot(u)

-8.0

The 2-norm of a vector can be easily recovered from the inner product:

>>> v_norm = np.sqrt(v.dot(v))

>>> v_norm

4.5825756949558398

Another option to calculate the norm of an array is to use the numpy.linalg.norm

function, which has the capability of computing a variety of different types of

norms. It is also convenient for computing norms of columns or rows of matrices,

as follows:

>>> from numpy.linalg import norm

>>> # calculate norms of the columns of X

>>> norm(X, axis=0)

array([42.661, 36.797, 35.128, 32.527])

Recall that the angle θ between two nonzero vectors v and u is given by

cos θ =
〈v, u〉
‖v‖ ‖u‖

where ‖v‖ =
√
〈v, v〉 denotes the 2-norm of x. By bringing the constants into the

inner product, we see that the angle satisfies

cos θ =

〈
v

‖v‖
,
u

‖u‖

〉
.

Hence, if we view the columns of X as vectors in R7, we can find the cosine of the

angles between these columns by dividing each by its length, and then computing

pairwise inner products. To divide the columns by their respective lengths, we may

execute the following code.

>>> Y = X/norm(X, axis=0)

>>> Y

array([[0.39848615, 0.35329218, 0.11386819, 0.15371887],

[-0.11720181, -0.16305793, 0.08540114, -0.12297509],

[0. , -0.02717632, -0.11386819, 0.],

[-0.37504578, -0.48917378, -0.51240685, -0.27669396],

127

[0.46880723, 0.54352643, 0.45547275, 0.49190037],

[0.25784398, 0.27176321, 0.4839398 , 0.43041282],

[-0.63288976, -0.48917378, -0.51240685, -0.67636301]])

Finally, we get the cosines of the angles between columns by computing Y TY .

To justify this calculation, consider the (i, j)th entry of Y TY :

(Y TY)i,j =

n∑
k=1

(Yi,k)(Y T)k,j

=

n∑
k=1

Yi,kYj,k

= 〈Y:,i, Y:,j〉 ,

where Y:,i denotes the ith column of Y , and Y:,j the jth column. Thus, we may

obtain the cosine of the angle between each pair of columns of X by computing

Y TY , which can be easily done in Python as follows:

>>> np.dot(Y.T,Y)

array([[1. , 0.97782999, 0.89014869, 0.94908967],

[0.97782999, 1. , 0.90978843, 0.92490144],

[0.89014869, 0.90978843, 1. , 0.9276955],

[0.94908967, 0.92490144, 0.9276955 , 1.]])

We remark that the diagonals are always equal to one because the angle between

a vector and itself is zero, and the cosine of zero is one.

Correlation

In statistics, correlation is a broad term that refers to various types of statistical

relationships and dependence between variables of interest. In this setting, the

Pearson correlation coefficient of two vectors u and v is defined to be the cosine of

the angle between the vectors u and v, where u is the vector obtained by subtracting

the mean of u from each of its entries, and similarly for v. Two vectors are said to

be

• Perfectly correlated if their correlation coefficient is equal to 1.

• Positively correlated if their correlation coefficient is between 0 and 1.

• Uncorrelated if their correlation coefficient is equal to 0.

• Negatively correlated if their correlation coefficient is between -1 and 0.

• Perfectly anticorrelated if their correlation coefficient is equal to -1.

If we have an array whose columns are the vectors of interest, we may calculate a

correlation matrix by first shifting the columns by their mean, and then computing

the matrix of angles as described in the previous section. The (i, j) entry of the

resulting correlation matrix gives the correlation coefficient of columns i and j.

128 Lab 12. Correlation and Covariance

Problem 2. Write a function corrMatrix that calculates and returns the cor-

relation matrix of the columns of the input array.

Again, NumPy provides a method for computing the correlation matrix of the

columns or rows of an array via the function np.corrcoef. Be aware of the keyword

argument rowvar. Nonzero integer values for rowvar will yield the correlation matrix

of the rows, whereas a value of 0 for rowvar will produce the correlation matrix of

the columns.

>>> np.corrcoef(W, rowvar=0)

array([[1. , 0.97782999, 0.89014869, 0.94908967],

[0.97782999, 1. , 0.90978843, 0.92490144],

[0.89014869, 0.90978843, 1. , 0.9276955],

[0.94908967, 0.92490144, 0.9276955 , 1.]])

Time both your implementation as well as that of NumPy. Which is faster?

The notion of correlation is important in establishing linear relationships be-

tween measurements. Parallel vectors pointing in the same direction are perfectly

correlated, since they lie in the same line. Orthogonal vectors, on the other hand,

are uncorrelated. Given two vectors of the same length, one can visually check for

correlation by viewing a scatter plot. This can be done in Python as follows:

>>> from matplotlib import pyplot as plt

>>> x = np.random.rand(100)

>>> y = np.random.rand(100)

>>> plt.scatter(x,y)

>>> plt.show()

>>> plt.clf()

You will observe that the scatter plot does not indicate any obvious linear rela-

tionship between the two vectors. You can calculate the correlation coefficient and

confirm that it is close to zero. See Figure 12.3 for examples of correlated and

uncorrelated data.

Problem 3. Import the data contained in the mortality.txt file. The first 17

rows are headers, providing the names of the 17 columns, and do not contain

data. The first column is simply an index column, and may also be omitted.

The following 16 columns provide various demographic and environmental

data for 60 countries, with the final column giving the mortality rate for that

country. Distinct data entries are separated by whitespace.

Write a function that prints the answers to the following three ques-

tions, and generates plots as described below. Between which pair of dis-

tinct columns is the highest correlation? Which column (apart from the last

column) has the most negative correlation coefficient with mortality rate?

Which column is most nearly uncorrelated with mortality rate (i.e. the cor-

relation coefficient is closest to 0)? Make scatter plots of all three of these

pairs of columns, and include them on the same subplot panel. In all relevant

129

Figure 12.3: Left: scatter plot of two slightly positively correlated vectors. Middle:

scatter plot of two uncorrelated vectors. Right: scatter plot of two highly negatively

correlated vectors.

cases, the mortality rate column should be the second argument passed to

plt.scatter.

It’s important to understand that the high correlation between quantities does

not necessarily imply a causal relationship. For example, high correlation between

violent crime rates and ice cream sales has been observed. This does not mean that

ice cream causes crime or that increases in crime makes people want to eat more

ice cream. Rather, both rates happen to increase during the summer and decrease

during the winter.

Another import consideration is that the correlation coefficient does not provide

information about non-linear relationships and dependencies between data (see Fig-

ure 12.4). Any thorough analysis will go well beyond a simple calculation of the

correlation matrix.

Covariance

Related to the notion of correlation is that of covariance. The covariance of two

vectors measures how they jointly vary together. In mathematical terms, given two

vectors u and v in Rn, with ū and v̄ denoting the mean-shifted versions of these

130 Lab 12. Correlation and Covariance

Figure 12.4: There is a clear nonlinear relationship present in this data, but the

Pearson correlation coefficient, which has a value of -0.00056, fails to capture it.

vectors (as before), we define the covariance of u and v to be

cov(u, v) =
〈ū, v̄〉
n− 1

.

If u and v are close to parallel and both have high variance, then their covariance

will be large in magnitude. On the other hand, if u and v are nearly orthogonal

(that is, nearly uncorrelated), or one has very small variance, then their covariance

will be small in magnitude.

Just as with correlation, we can generate a covariance matrix for a collection

of vectors that contains the covariance for each set of vectors. Specifically, given a

collection of vectors x1, . . . , xm, we define the covariance matrix C for this collection

to be the m×m matrix satisfying

Ci,j = cov(u, v).

If we let X be the matrix whose columns are the mean-shifted vectors x̄1, . . . , x̄m,

note that

C =
1

n− 1
XTX. (12.1)

This gives us a very straight-forward way to compute the covariance matrix in

Python:

>>> # we will calculate the covariance matrix of W

131

>>> # subtract out the mean from the columns

>>> X = W-W.mean(axis=0)

>>> C = X.T.dot(X)/(X.shape[0]-1)

array([[303.33333333, 255.83333333, 222.33333333, 219.5],

[255.83333333, 225.66666667, 196. , 184.5],

[222.33333333, 196. , 205.66666667, 176.66666667],

[219.5 , 184.5 , 176.66666667, 176.33333333]])

As usual, there is a nice way to compute the covariance matrix in NumPy, using

the function np.cov. This function also has the keyword argument rowvar which

determines whether the covariance of the rows or of the columns is computed.

>>> np.cov(W, rowvar=0)

array([[303.33333333, 255.83333333, 222.33333333, 219.5],

[255.83333333, 225.66666667, 196. , 184.5],

[222.33333333, 196. , 205.66666667, 176.66666667],

[219.5 , 184.5 , 176.66666667, 176.33333333]])

Problem 4. Compute and report the covariance matrix of the mortality.txt

data set.

Note that the covariance matrix is symmetric. Indeed, from equation 12.1, we

can see that it is positive semi-definite and has nice spectral properties. Observe

from that same equation that the spectral decomposition of the covariance matrix

is closely related to the singular value decomposition of X. It turns out that the

covariance matrix and its spectral properties contain much information about rela-

tionships, patterns, and structure in the data. Several statistical techniques in data

compression, dimensionality reduction, and information retrieval rely on discover-

ing and exploiting this structure, and hence the covariance matrix and the singular

value decomposition play an important role in data analysis.

Latent Semantic Indexing

We now have the tools to build a simple, yet effective, system for indexing and

retrieving documents according to their semantic content. The method that we will

implement is called Latent Semantic Indexing, or LSI.

Suppose we have a collection of documents, which we call a corpus, and we wish

to find the particular documents that are most closely related to a given sequence

of search terms. This problem arises when searching a database of newspaper

articles, an email inbox, a scientific journal, and in many more settings. When

our corpus consists of many documents, it becomes infeasible to read, or even skim,

each document on our own. We need to utilize our mathematical and computational

skills to facilitate the process. To begin, we create a numerical representation of

our corpus. A common approach, known as the vector space model, is as follows.

First, specify a list v of words of interest (this could just be all the unique words

found in the corpus). Let m be the length of the list v. Then we can represent a

132 Lab 12. Correlation and Covariance

given document by a m-dimensional vector

d =
[
d1 d2 · · · dm

]T
,

where di ∈ R gives the contribution of the i-th term in the list v to the document.

For our purposes in this lab, we define di to be the number of times term i occurs

in the document. The following code snippet shows how to compute the vector rep-

resentation of a document given a list of words. We use a particular data structure

Counter, which counts the number of occurrences of each unique element in a list.

>>> from collections import Counter

>>> # initialize the word list and the document

>>> v = ["the", "great", "live", "math", "things", "do", "me", "you"]

>>> doc = "If you cannot do great things do small things in a great way"

>>> # split the document into a list of words, make counter

>>> count = Counter(doc.split())

>>> # create the vector representation

>>> d = np.array([count[w] for w in v])

>>> print d

[0 2 0 0 2 2 0 1]

If our corpus consists of n documents, then we can represent the entire corpus by a

m×n matrix D whose columns are just the vector representations of the documents.

In most real-world applications, m and n are very large (in the several thousands,

or more). Thankfully, the matrix D will often be very sparse, since each particular

document contains only a small subset of the entire list of words. Thus, we can use

the sparse libraries in SciPy to efficiently store and compute with this matrix.

We now use the singular value decomposition to reduce the dimensionality of the

matrix representation of our corpus in a way that optimally decouples the semantic

content of the documents. More precisely, we specify the number t of greatest

singular values we wish to retain, and calculate the truncated SVD of the matrix

D, yielding a rank-t approximation

Dt = UtΣtV
T
t ,

where Ut and Vt are orthogonal matrices of size m× t and n× t, respectively, and

Σt is a t× t diagonal matrix containing the t largest singular values of D. A typical

value for t is in the low hundreds. We can compute this in Python as follows:

>>> from scipy.sparse import linalg as la

>>> # assume D is a sparse matrix

>>> t = 100

>>> U, Sig, VT = la.svds(D, k=t)

Although Ut and Vt are not sparse, they are much more feasible to compute with

given that t� m. Observe that the i-th column of V Tt is Σ−1
t UTt di, a transformed

version of the i-th document vector. It turns out that the matrix Σ−1
t UTt defines a

projection from Rm onto a t-dimensional subspace in such a way that the projec-

tions of semantically similar documents have high correlation in the subspace, and

semantically differing documents will have low correlation. Thus, if q is the vector

representation of a query, we can find the document in the corpus with the closest

133

semantical content to q by projecting q down to the t-dimensional subspace, cal-

culating its correlation with each of the projected document vectors in the corpus,

and then selecting the document with the highest such correlation.

>>> # assume that docs is a list of the original documents

>>> # assume that q is the vector representation of a query

>>> # first, project q to the subspace

>>> q = (1/S)*(U.T.dot(q))

>>> # now calculate correlation of q with each column of VT

>>> q -= q.mean() # shift by mean

>>> VT -= VT.mean(axis=0)

>>> q /= norm(q) # normalize

>>> VT /= norm(VT, axis=0)

>>> coefs = VT.T.dot(q)

>>> # select the index of the highest correlation

>>> ind = np.argmax(coefs)

>>> print docs[ind]

Problem 5. Do LSI and stuff.

As a final note, the concepts of variance, standard deviation, correlation, and

covariance apply to a much broader class of objects known as random variables,

which are central to statistics and probability theory. These topics will be covered

in detail later on.

