
Lab 14

Numerical Derivatives

Lab Objective: Understand and implement finite difference approximations of

the derivative. Then use finite difference quotients to find edges in images via the

Sobel filter.

Derivative approximations in one dimension

The derivative of a function f at a point x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (14.1)

In this lab we will investigate one way a computer can calculate f ′(x0).

Forward difference quotients

Suppose that in Equation 14.1, instead of taking a limit, we just pick a small value

for h. Then we would expect f ′(x0) to be close to the quantity

f(x0 + h)− f(x0)

h
. (14.2)

This quotient is called the first order forward difference approximation of the deriva-

tive. Because f ′(x0) is the limit of such quotients, we expect that when h is small,

this quotient is close to f ′(x0). We can use Taylor’s formula to find just how close.

By Taylor’s formula,

f(x0 + h) = f(x0) + f ′(x0)h+R2(h),

where R2(h) =
(∫ 1

0
(1− t)f ′′(x0 + th)dt

)
h2. (This is called the integral form of the

remainder for Taylor’s Theorem; see [ref textbook] for one exposition). When we

solve this equation for f ′(x0) we get

f ′(x0) =
f(x0 + h)− f(x0)

h
− R2(h)

h
. (14.3)

143

144 Lab 14. Numerical Derivatives

Thus, the error in using the first order forward difference quotient to approximate

f ′(x0) is ∣∣∣∣R2(h)

h

∣∣∣∣ ≤ |h|∫ 1

0

|1− t||f ′′(x0 + th)|dt.

If we assume f ′′ is continuous, then for any δ, set M = supx∈(x0−δ,x0+δ) f
′′(x).

Then if |h| < δ, we have∣∣∣∣R2(h)

h

∣∣∣∣ ≤ |h|∫ 1

0

Mdt = M |h| = O(h).

Therefore, the error in using (14.2) to approximate f ′(x0) grows like h.

Centered difference quotients

In fact, we can approximate f ′(x0) to second order with another difference quotient,

called the centered difference quotient. Evaluate Taylor’s formula at x0−h to derive

f ′(x0) =
f(x0)− f(x0 − h)

h
+
R2(−h)

h
. (14.4)

The quotient that is the first term of (14.4) is called the backward difference quotient.

This quotient also approximates f ′(x0) to first order, so it is not the quotient we

are looking for. When we add (14.3) and (14.4) and solve for f ′(x0) (by dividing

by 2), we get

f ′(x0) =
1
2f(x0 + h)− 1

2f(x0 − h)

h
+
R2(−h)−R2(h)

2h
(14.5)

The centered difference quotient is the first term of the right hand side of (14.5).

Let us investigate the remainder term to see how accurate this approximation is.

Recall from the proof of Taylor’s theorem that Rk = f(k)(x0)
k! hk +Rk+1. Therefore,

R2(−h)−R2(h)

2h
=

1

2h

(
f ′′(x0)

2
h2 +R3(−h)− f ′′(x0)

2
h2 −R3(h)

)
=

1

2h
(R3(−h)−R3(h))

=
1

2h

((∫ 1

0

(1− t)2

2
f ′′′(x0 + th)dt

)
h3 −

(∫ 1

0

(1− t)2

2
f ′′′(x0 − th)dt

)
h3

)
=

(∫ 1

0

(1− t)2

4
(f ′′′(x0 + th)− f ′′′(x0 − th))

)
h2

= O(h2)

once we restrict h to some δ-neighborhood of 0. So the error in using the centered

difference quotient to approximate f ′(x0) grows like h2, which is smaller than h

when |h| < 1.

Accuracy of approximations

Let us discuss what step size h we should plug into the difference quotients to get

the best approximation to f ′(x0). Since f ′ is defined as a limit as h→ 0, you may

145

h 1e-1 1e-3 1e-5 1e-7 1e-9 1e-11

Error 5e-3 5e-7 6e-11 6e-11 7e-9 1e-5

Table 14.1: This table shows that it is best not to choose h too small when you

approximate derivatives with difference quotients. Here, “Error” equals the abso-

lute value of f ′(1) − fapp(1) where f(x) = ex and fapp is the centered difference

approximation to f ′.

think that it is best to choose h as small as possible. In fact, dividing by very small

numbers causes errors in floating point arithmetic. This means that as we decrease

|h|, the error between f ′(x0) and the difference quotient will first decrease, but then

increase when |h| gets too small.

Let us do an example with the function f(x) = ex. A quick way to write f as a

function in Python is with the lambda keyword.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> f = lambda x: np.exp(x)

In general, the line f = lambda <params> : <expression> is equivalent to defining a

function f that accepts the parameters params and returns expression. Next we fix

a step size h and define an approximation to the derivative of f using the centered

difference quotient.

>>> h = 1e-1

>>> Df_app = lambda x: .5*(f(x+h)-f(x-h))/h

Finally, we check the accuracy of this approximation at x0 = 1 by computing the

difference between Df_app(1) and the actual derivative evaluated at 1.

Since f(x) = e^x, the derivative of f(x) is f(x)

>>> np.abs(f(1)-Df_app(1))

0.0045327354883726301

We note that our functions f and Df_app behave as expected when they are passed

a NumPy array.

>>> h = np.array([1e-1, 1e-3, 1e-5, 1e-7, 1e-9, 1e-11])

>>> np.abs(f(1)-Df_app(1))

array([4.53273549e-03, 4.53046679e-07, 5.85869131e-11,

5.85873572e-11, 6.60275079e-09, 1.04294937e-05])

These results are summarized in Table 14.1.

Thus, the optimal value of h is one that is small, but not too small. A good

choice is h = 1e-5.

Problem 1. Write a function that accepts as input a callable function object

f, an array of points pts, and a keyword argument h that defaults to 1e-5.

Return an array of the centered coefficient difference quotients of f at each

146 Lab 14. Numerical Derivatives

point in pts with the specified value of h.

You may wonder if the forward or backward difference quotients are ever used,

since the centered difference quotient is a more accurate approximation to the

derivative. In fact, there are some functions that in practice do not behave well

under centered difference quotients. In these cases one must use the forward or

backward difference quotient.

Finally, we remark that forward, backward, and centered difference quotients can

be used to approximate higher-order derivatives of f . However, taking derivatives

is an unstable operation. This means that taking a derivative can amplify the

arithmetic error in your computation. For this reason, difference quotients are not

generally used to approximate derivatives higher than second order.

Derivative approximations in multiple dimensions

Finite difference methods can also be used to calculate derivatives in higher dimen-

sions. Recall that the Jacobian of a function f : Rn → Rm at a point x0 ∈ Rn is

the m× n matrix J = (Jij) defined by

Jij =
∂fi
∂xj

(x0).

The Jacobian is useful in many applications. For example, we will use the Jacobian

in Lab 16 to find zeros of functions in multiple variables.

The forward difference quotient for approximating a partial derivative is

∂f

∂xi
(x0) ≈ f(x0 + hei)− f(x0)

h
,

where ei the ith standard basis vector. Similarly, the centered difference approxi-

mation is
∂f

∂xi
(x0) ≈

1
2f(x0 + hei)− 1

2f(x0 − hei)
h

.

Problem 2.

1. Write a function that accepts

(a) a function handle f,

(b) an integer that is the dimension of the range of f,

(c) an integer n that is the dimension of the domain of f,

(d) an n-dimensional NumPy array pt representing a point in Rn, and

(e) an keyword argument h that defaults to 1e-5.

Return the approximate Jacobian matrix of f at pt using the centered

coefficients difference quotient.

147

2. Let f : R2 → R2 be defined by

f(x, y) =

(
ex sin(y) + y3

3y − cos(x)

)
Compare your function against the analytically computed derivative

on the square [−1, 1]× [−1, 1] using ten thousand grid points (100 per

side). You may apply your function to the points one at a time using

a double for loop, but you should compute the analytic derivative in

one line. What is the maximum error of your function?

Hint: The following code defines the function f(x, y) = (x2, x+ y).

f accepts a length-2 NumPy array

>>> f = lambda x: np.array([x[0]**2, x[0]+x[1]])

Application to image filters

Recall that a computer stores an image as a 2-D array of pixel values (i.e., a matrix

of intensities). An image filter is a function that transforms an image by operating

on it locally. That is, to compute the ijth pixel value in the new image, an image

filter uses only the pixels in a small neighborhood of the ijth pixel in the original

image.

In this lab, we will use a filter derived from the gradient of an image to find

edges in an image.

Convolutions

One example of an image filter is to convolve an image with a filter matrix. A filter

matrix is a matrix whose height and width are relatively small odd numbers. If the

filter matrix is

F =

f−1,−1 f−1,0 f−1,1

f0,−1 f0,0 f0,1

f1,−1 f1,0 f1,1

 ,

then the convolution of an image A with F is A ∗ F = (Cij) where

Cij =

1∑
k=−1

1∑
`=−1

fk`Ai+k,j+`. (14.6)

Say A is an m × n matrix. Here, we take Aij = 0 when i 6∈ {1, . . .m} or j 6∈
{1, . . . , n}. The value of Cij is a linear combination of the nearby pixel values, with

coefficients given by F (see Figure 14.1). In fact, Cij equals the Frobenius inner

product of F with the 3× 3 submatrix of A centered at ij.

148 Lab 14. Numerical Derivatives

•

•

•

•

Figure 14.1: This diagram illustrates how to convolve an image with a filter. The

light grey rectangle represents the original image A, and the dark grey squares are

the filter F . The larger rectangle is the image padded with zeros; i.e., all pixel

values in the outer white band are 0. To compute the entry of the convolution

matrix C located at a black dot, take the inner product of F with the submatrix of

the padded image centered at the dot.

Implementation in NumPy

Let us write a function that convolves an image with a filter. You can test this

function on the image cameraman.jpg, which appears in Figure 14.2a. The following

code loads this image and plots it with matplotlib.

>>> K = plt.imread('cameraman.jpg')
>>> plt.imshow(K, cmap = 'gray')
>>> plt.show()

Here is the function definition and some setup.

1. def Filter(image, filter):

2. m, n = image.shape

3. h, k = filter.shape

To convolve image with filter, we must first pad the array image with zeros around

the edges. This is because in (14.6), entries Aij are set to zero when i or j is out

of bounds. We do this by creating a larger array of zeros, and then making the

interior part of the array equal to the original image (see Figure 14.1).

For example, if the filter is a 3× 3 matrix, then the following code will pad the

matrix with the appropriate number of zeros.

Create a larger matrix of zeros

image_pad = np.zeros((m+2, n+2))

Make the interior of image_pad equal to the original image

149

image_pad[1:1+m, 1:1+n] = image

We want to do this in general in our function.

5. image_pad = # Create an array of zeros of the appropriate size

7. # Make the interior of image_pad equal to image

Finally, we iterate through the image to compute each entry of the convolution

matrix.

8. C = np.empty_like(image)

9. for i in xrange(n):

10. for j in xrange(m):

11. C[i, j] = # Compute C[i, j]

Problem 3.

1. Finish writing the function Filter by filling in lines 5, 7, and 10.

2. SciPy has a function that convolves two matrices just like Filter. Load

this function with the command from scipy.signal import convolve2d. Then,

convolve an image img with a filter F by typing convolve2d(img, F). Test

this function on cameraman.jpg.

Gaussian blur

A Gaussian blur is an image filter that operates on an image by convolving with

the matrix

G =
1

159

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

 .

We can use the function Filter that we wrote in Problem 3 to apply a Gaussian blur

to the image cameraman.jpg. The result is in Figure 14.2b. Blurring an image can

remove “noise”, or random variation that is the visual analog of static in a radio

signal (and equally undesirable).

Edge detection

Automatically detecting edges in an image can be used to segment or sharpen the

image. We will find edges with the Sobel filter, which computes the gradient of

the image at each pixel. The magnitude of the gradient tells us the rate of change

of the pixel values, and so large magnitudes should correspond to edges within the

image. The Sobel filter is not a convolution, although it does use convolutions.

We can think of an image as a function from a 2 × 2 grid of points to R. The

image maps a pixel location to an intensity. It does not make sense to define the

150 Lab 14. Numerical Derivatives

(a) Unfiltered image. (b) Image after Gaussian blur is applied.

(c) Image after the Sobel filter is applied.

Figure 14.2: Here is an example of a Gaussian blur and the Sobel filter applied

to an image. This photo, known as “cameraman,” is a standard test image in

image processing. A database of such images can be downloaded from http://

www.imageprocessingplace.com/root_files_V3/image_databases.htm.

derivative of this function as a limit because the domain is discrete—a step size h

cannot take on arbitrarily small values. Instead, we define the derivative to be the

centered difference quotient of the previous section. That is, we define the derivative

in the x-direction at the ijth pixel to be

1

2
Ai+1,j −

1

2
Ai−1,j .

We can use a convolution to create a matrix Ax whose ijth entry is the derivative

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

151

of A at the ijth entry, in the x-direction. In fact, Ax = A ∗ S, where

S =
1

8

−1 0 1

−2 0 2

−1 0 1

 .

Note that this convolution takes a weighted average of the x-derivatives at (i, j),

(i, j + 1), and (i, j − 1). The derivative at (i, j) is weighted by 2. Using a weighted

average instead of just the derivative at (i, j) makes the derivative less affected by

noise.

Now we can define the Sobel filter. A Sobel filter applied to an image A results

in an array B = (Bij) of 0’s and 1’s, where the 1’s trace out the edges in the image.

By definition,

Bij =

{
1 if ‖∇A(ij)‖2 > M

0 otherwise.

Here, ∇A(ij) = ((A ∗ S)ij , (A ∗ ST)ij) is the gradient of A at the ijth pixel. The

constant M should be “sufficiently large” enough to pick out those pixels with the

largest gradient (i.e., those pixels that are part of an edge). A good choice for M

is 4 times the average value of ‖∇A(ij)‖2 over the whole image A.

When the Sobel filter is applied to cameraman.jpg, we get the image in Figure

14.2c. Here, the 1’s in B were mapped to “white” and the 0’s were mapped to

“black.”

Problem 4. Write a function that accepts an image as input and applies

the Sobel filter to the image.

