
Lab 14

Floating Point Numbers

Lab Objective: Gain a basic understanding of the IEEE floating point standard.

Introduction

Floating point numbers permeate modern computing, but it is not always good to

use them without knowledge of what they are and how they work. A fundamental

understanding of the inner workings of floating point numbers can be very helpful

when working with a wide variety of floating point computations. By far the most

common floating point standard is the IEEE floating point standard described by

in the standards IEEE-754-1985, IEEE-854-1987, and IEEE-754-2008. These stan-

dards outline how floating point numbers are represented in binary form and how

operations like addition, subtraction, multiplication, division, and rounding should

work. Most floating point numbers are either 32 or 64 bits long. 32 bit floating point

numbers are known as ”single precision floating point numbers” and 64 bit floating

point numbers are known as ”double precision floating point numbers.” There are

also 16, 128, and 256 bit versions, but they are much less common. Floating point

numbers in Python are stored as double precision values. Here we will consider 32

bit floating point numbers.

Before considering any more of the details of IEEE floating point representation,

it will be good to establish what a floating point number is at all. Floating point

representation is a way of representing a number that is similar to the ”scientific

notation” commonly used to represent numbers that are extremely large or small.

In general, a floating point number is a number written in the form d × βp where

β ∈ N, β ≥ 2 is the base used for computation, d is a decimal (like 1.10110) with

base β and p ∈ Z is the power of β. Theoretically, for a given base β ∈ N, β ≥ 2,

any real number r ∈ R can be represented at least one way by a series of the form

r = d0β
p + d1β

p−1 + · · · =
∞∑
i=0

diβ
p−i

where the di are the digits of a decimal number d. This representation is not

necessarily unique, but finite approximations of this sort of sum can be useful in
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performing actual computations. The floating point representation of a number

allows easy representation of real numbers, particularly when they are extremely

large, or when they are not integers. The normal mathematical operations on real

numbers apply in the theoretical context.

In real applications, floating point numbers can be used to make an approximate

representation of a useful number of real numbers. There are uncountably many

real numbers, so it is impossible to create a computer system that can distinguish

perfectly between all of them, but that is okay since measurements are imperfect

and approximate computations are usually good enough.

It is also worth noting that often, for brevity, hexadecimal numbers are used to

represent integers and floating point nubmers. A hexadecimal number is a number

base 16. Each digit of a hexadecimal number can be used to represent four binary

digits. The letters a through f are used to represent the additional 6 values needed.

For example a1f23 is the same as 10100001111100100011. Python has the built in

functions bin and hex to convert integers to binary and hexadecimal values. A binary

and hexadecimal numbers stored as strings can be converted to integers using the

base argument of the built in int funciton. For example int("a1f23", base=16) will

return 663331, the base 10 representation of the number.

Problem 1. • Make a Python class representing an arbitrary precision

floating point number. This shouldn’t be too hard since Python’s inte-

gers are arbitrary precision as well, just store one integer representing

the exponent in some way and another representing the significand.

Make methods to do all of the following:

– Convert a floating point object to a Python float.

– Print the floating point number correctly.

– Copy the floating point number.

– Perform addition of two of your floating point objects (perform

all operations without any sort of rounding first).

– Perform subtraction of two of your floating point objects.

– Perform multiplication of two of your floating point objects.

– Truncate the significand of the floating point number to remove

all digits below a given power of 10.

• Now, make another class using the class you just wrote that tracks

errors in computation. Track two values, one for the exact value, and

one for the exact error. Computations involving the value and error

should be carried out like they would be for your arbitrary precision

floating point class. Have it track the exact value of the significand

and the error until you have it truncate all digits that fall within the

error. Make methods that do all of the following:

– Print the floating point number correctly.
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– Copy the floating point nubmer.

– Perform addition of two of your floating point objects. Be sure to

add the corresponding errors as well to represent that the possible

range of values has increased.

– Perform subtraction of two floating point objects. Again, be sure

to add the corresponding errors.

– Perform multiplication of two floating point objects. Here’s how

you can calculate the error term: Given two floating point num-

bers a± ε and b± δ where a and b are the values and ε and δ are

the error terms, the result will be ab±aδ± bε± εδ. The first term

in the expanded product will be the significand of the product

and the rest will be the new error term. Be sure to take absolute

values of a and b when calculating the error so that there is never

a negative error term.

– Truncate the floating point number to the smallest power of ten

that is larger than the error term. Set the new error term to

be this same power of ten. (If you want to do many different

calculations involving these floating point numbers, you may, at

times have to truncate the values to prevent the integer storing

the significand from becoming too large.)

Binary Representation

A 32 bit floating point number is represented by 32 bits, each storing either a 0 or

a 1.

The first bit in the binary representation of a floating point number represents

the sign of the number. If it is 0, the number is positive. If it is 1, the number is

negative.

The next 8 bits are used to store the exponent of the floating point number.

The exponent does not have an explicit sign bit, but is instead scaled so that the

counting runs from -127 to 128.

The final 23 bits are used to store the binary decimal number. This portion

of the number is often called the ”mantissa” or the ”significand”. Since the first

number of any decimal in binary is always one, the first number in the significand

is assumed to be one and the bits included in the significand are used to represent

the remaining digits.

For example, the following is the binary representation of the number .25.

0︸︷︷︸
sign

01111101︸ ︷︷ ︸
exponent

(1.)︸︷︷︸
Implied1.

00000000000000000000000︸ ︷︷ ︸
significand

Since there is a limit on the number of digits used to represent the significand,

rounding must occur at each step. There are several possible rounding conventions,

but IEEE floating point rounds the significand to the nearest even value, which in



150 Lab 14. Floating Point Numbers

binary means that the last digit must become 0. For example, using binary decimals,

the value 1011011.1 would round to 1011100 since that is the nearest even number.

Since rounding occurs after each operation, addition, subtraction, multiplica-

tion, and division behave approximately how they should. In some cases, the usual

properties you would expect from these operations do not hold. More on that later.

For a double precision floating point number, there is still one bit to store the

sign. There are 11 bits to store the exponent, and 52 bits used to store the value

(with the one still implied).

Floating point operations on modern processors are heavily optimized. There

are built in operations that allow for addition, subtraction, multiplication, division,

square roots, and several other operations. Floating point operations are actually

a common way of measuring the performance of computer systems. What is con-

sidered a single floating point operation depends somewhat on the system. Some

processors can perform a single addition and multiplication in a single clock cy-

cle, so a floationg point operation is sometimes considered to be an addition and a

multiplication. It can also be measured as an addition or a multiplication.

The highest and lowest values in the exponent are reserved for modified numbers.

Zero is represented using the smallest exponent value (binary 0, representing a

negative power of 2 since the exponent is scaled) with a significand of 0. When the

exponent is as small as possible, the significand is no longer considered normalized

and the implied one is no longer considered. This allows for the representation of

even smaller numbers, but it implies the loss of some precision. For example, the

following code in Python yields 0

1.123456789012345 * 10.**-306 * 10.**153 * 10.**153 - 1.123456789012345

While this yields -0.0365123681616.

1.123456789012345 * 10.**-322 * 10.**161 * 10.**161 - 1.123456789012345

Numbers represented in this way are called ”denormalized numbers” or ”subnormal

numbers.” Floating point zero is also still allowed to have a sign, so for example,

-0. is valid in Python and prints as -0.0. 0. is considered equal to -0., but the sign

still carries through in multiplication, so for example -0. * 0. is -0.. There are no

analogues of the denormalized numbers. The values of the highest exponent are

used to store different kinds of infinity and ”nan” values (nan stands for ”not a

number”). IEEE floating point allows for both negative and positive infinity. nan

values are defined to never be equal to one another. Positive and negative infinity

can be used for equality testing, for example, the following returns True.

a = (10.**300)

a *= a # a is now positive infinity

a == a

Fast Approximation of the Square Root

There are a variety of flaws involved with floating point computations, but those will

be discussed in a later lab. Here we will present an example of a clever manipulation
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of the IEEE floating point format. Around the end of the 90’s an algorithm was

discovered which can give a quick approximation of the square root of a number. It

takes advantage of the layout of the bits in the IEEE floating point standard. The

main idea of it is that the exponent of a binary floating point number d can be used

as a rough approximation of the number log2 (d). In performing this computation,

we must account for the fact that the exponent has been scaled to allow representa-

tion of negative numbers. The smallest exponent for 32 bit floating point integers

is −27 − 1 = −127. Since a floating point number has 23 bits in the significand,

scaling the exponent can be represented in integer form as addition of 230 − 223.

Once we have scaled the exponent, we can divide it by two. We then scale the

exponent back to its original value. With some extra arithmetic, the two scaling

values can be reduced into the addition of a single constant. When all is said and

done, some simple code to calculate the square root of a function looks like this:

def pysqrt32(A, reps):

Ac = A.copy()

I = Ac.view(dtype=np.int32) # get an integer view of the array

I >>= 1 # divide by two using a binary bit flip

I += (1<<29) - (1<<22) # scale by a constant value

for i in xrange(reps):

Ac = .5 *(Ac + A / Ac) # use an iterative method to increase accuracy, ←↩
reps is the number of times.

return Ac

The iterative method mentioned here is Newton’s method, it is discussed at length

in Volume 1, this is one of its many applications. Without using any additional

iterations of Newton’s method, the above code gives the approximation to the square

root shown in Figure 14.1. With one iteration of Newton’s Method, the above

code gives the approximation shown in Figure 14.2. Notice that there is no visible

difference between the square root and the approximation. The results should be

the same for 64 bit floating point numbers.

Something similar can be done to find the reciprocal of the square root. The

first two of the following Cython functions calculate the inverse square root for 32

and 64 bit floating point arrays respectively. The last two functions are equivalents

that use the square root function built into C.

from numpy cimport ndarray as ar

import numpy as np

cimport numpy as np

cimport cython

from libc.math cimport sqrt

@cython.boundscheck(False)

@cython.wraparound(False)

def cyinvsqrt32(ar[np.float32_t] A, int reps):

cdef ar[np.float32_t] Ac = A.copy()

cdef ar[np.int32_t] I = Ac.view(dtype=np.int32)

cdef int i, j

cdef np.int32_t c = 0x5f3759df

cdef np.float32_t temp, half=.5, threehalves=1.5

for i in xrange(A.size):

temp = A[i] * half

I[i] = c - ((I[i]) >> 1)

for j in xrange(reps):
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Figure 14.1: The initial approximation for the square root chosen using the binary

representation of the floating point number

Ac[i] = Ac[i] * (threehalves - temp * Ac[i] * Ac[i])

return Ac

@cython.boundscheck(False)

@cython.wraparound(False)

def cyinvsqrt64(ar[double] A, int reps):

cdef ar[double] Ac = A.copy()

cdef ar[np.int64_t] I = Ac.view(dtype=np.int64)

cdef np.int64_t c = 0x5fe6ec85e7de30da

cdef int i, j

cdef double temp, half=.5, threehalves=1.5

for i in xrange(A.size):

temp = A[i] * half

I[i] = c - ((I[i]) >> 1)

for j in xrange(reps):

Ac[i] = Ac[i] * (threehalves - temp * Ac[i] * Ac[i])

return Ac

@cython.boundscheck(False)

@cython.wraparound(False)

def cinvsqrt32(ar[np.float32_t] A):

cdef int i

cdef ar[np.float32_t] res = np.empty_like(A)

for i in xrange(A.size):

res[i] = 1 / sqrt(A[i])

return res
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Figure 14.2: The approximation of the square root after one iteration of an iterative

method to increase accuracy.

@cython.boundscheck(False)

@cython.wraparound(False)

def cinvsqrt64(ar[double] A):

cdef int i

cdef ar[double] res = np.empty_like(A)

for i in xrange(A.size):

res[i] = 1 / sqrt(A[i])

return res

This fast inverse square root has been widely used in computer graphics to

quickly normalize vectors. This is a key part of shading 3D surfaces. It has also

been used in a variety of other applications.

Problem 2. Make a version of the square root function above that operates

on 64 bit floating point arrays. Hint: you will have to change the type you

use for the new view of Ac and you will have to change the constants 29 and

22. Notice that 29 is 32−3 and that 22 is 29− (e−1) where e is the number

of bits used for the exponent.

Time the 64 bit square root against NumPy’s square root. NumPy will
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Figure 14.3: An initial guess for the inverse square root of a number obtained using

the floating point representation.

probably be faster for full accuracy, but the initial guess should run faster

than NumPy’s square root. How do the implementations that take advantage

of the format of floating point numbers compare with simply taking the

reciprocal of the square root of a number using the square root function

built in to C? Why do you think that is?

Note: It can be interesting to know about these sorts of bitwise operations but,

unless you are desperate to optimize an algorithm a little further, it is probably

easier and safer to use the built in implementations.
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Figure 14.4: An approximation for the inverse square root of a number after one

iteration of Newton’s Method.


