
Lab 15

Profiling Python Code

Lab Objective: Learn how to efficiently optimize Python code.

The best code goes through multiple drafts. In a first draft, you should focus

on writing code that does what is is supposed to and is easy to read. After writing

a fist draft, you may find that your code does not run as quickly as you need it to.

Then it is time to optimize the most time consuming parts of your code so that

they run as quickly as possible.

In this lab we will optimize the function qr1() that computes the QR decom-

position of a matrix via the modified Gram-Schmidt algorithm (see Lab 7).

import numpy as np

from scipy import linalg as la

def qr1(A):

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = la.norm(Q[:, i])

Q[:, i] = Q[:, i]/la.norm(Q[:, i])

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-Q[:, j].dot(Q[:, i])*Q[:,i]

return Q, R

What to optimize

Python provides a profiler that can identify where code spends most of its runtime.

The output of the profiler will tell you where to begin your optimization efforts.

In IPython1, you can profile a function from the command line with %prun. Here

we profile qr1() on a random 300× 300 array.

1If you are not using IPython, you will need to use the cProfile module documented here:
https://docs.python.org/2/library/profile.html.
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>>> A = np.random.rand(300, 300)

>>> \%prun qr1(A)

On this computer, we get the following output.

97206 function calls in 1.343 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.998 0.998 1.342 1.342 profiling_hw.py:4(qr1)

89700 0.319 0.000 0.319 0.000 {method ’dot’ of ’numpy.ndarray’ objects}

600 0.006 0.000 0.012 0.000 function_base.py:526(asarray_chkfinite)

600 0.006 0.000 0.009 0.000 linalg.py:1840(norm)

1200 0.005 0.000 0.005 0.000 {method ’any’ of ’numpy.ndarray’ objects}

600 0.002 0.000 0.002 0.000 {method ’reduce’ of ’numpy.ufunc’ objects}

1200 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}

1200 0.001 0.000 0.002 0.000 numeric.py:167(asarray)

1 0.001 0.001 0.001 0.001 {method ’copy’ of ’numpy.ndarray’ objects}

600 0.001 0.000 0.022 0.000 misc.py:7(norm)

301 0.001 0.000 0.001 0.000 {range}

1 0.001 0.001 0.001 0.001 {numpy.core.multiarray.zeros}

600 0.001 0.000 0.001 0.000 {method ’ravel’ of ’numpy.ndarray’ objects}

600 0.000 0.000 0.000 0.000 {method ’conj’ of ’numpy.ndarray’ objects}

1 0.000 0.000 1.343 1.343 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

The first line of the output tells us that executing qr1(A) results in almost

100,000 function calls. Then we see a table listing these functions along with data

telling us how much time each takes. Here, ncalls is the number of calls to the

function, tottime is the total time spent in the function, and cumtime is the amount

of time spent in the function including calls to other functions.

For example, the first line of the table is the function qr1(A) itself. This function

was called once, it took 1.342s to run, and 0.344s of that was spent in calls to other

functions. Of that 0.344s, there were 0.319s spent on 89,700 calls to np.dot().

With this output, we see that most time is spent in multiplying matrices. Since

we cannot write a faster method to do this multiplication, we may want to try to

reduce the number of matrix multiplications we perform.

How to Optimize

Once you have identified those parts of your code that take the most time, how

do you make them run faster? This section lists a few ideas. Always, you should

use the profiling and timing functions to help you decide when an optimization is

actually useful.

Avoid recomputing values

In our function qr1(), we can avoid recomputing R[i,i] in the outer loop and

R[i,j] in the inner loop. The rewritten function is as follows:

def qr2(A):

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))
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for i in range(ncols):

R[i, i] = la.norm(Q[:, i])

Q[:, i] = Q[:, i]/R[i, i]

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-R[i, j]*Q[:,i]

return Q, R

Profiling qr2() on a 300× 300 matrix produces the following output.

48756 function calls in 1.047 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.863 0.863 1.047 1.047 profiling_hw.py:16(qr2)

44850 0.171 0.000 0.171 0.000 {method ’dot’ of ’numpy.ndarray’ objects}

300 0.003 0.000 0.006 0.000 function_base.py:526(asarray_chkfinite)

300 0.003 0.000 0.005 0.000 linalg.py:1840(norm)

600 0.002 0.000 0.002 0.000 {method ’any’ of ’numpy.ndarray’ objects}

300 0.001 0.000 0.001 0.000 {method ’reduce’ of ’numpy.ufunc’ objects}

301 0.001 0.000 0.001 0.000 {range}

600 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}

600 0.001 0.000 0.001 0.000 numeric.py:167(asarray)

300 0.000 0.000 0.012 0.000 misc.py:7(norm)

1 0.000 0.000 0.000 0.000 {method ’copy’ of ’numpy.ndarray’ objects}

300 0.000 0.000 0.000 0.000 {method ’ravel’ of ’numpy.ndarray’ objects}

1 0.000 0.000 1.047 1.047 <string>:1(<module>)

300 0.000 0.000 0.000 0.000 {method ’conj’ of ’numpy.ndarray’ objects}

1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros}

1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

Our optimization reduced almost every kind of function call by half, and reduced

the total run time by 0.295s.

Some less obvious ways to eliminate excess computations include moving compu-

tations out of loops, not copying large data structures, and simplifying mathematical

expressions.

Avoid nested loops

The best way to do this is to use NumPy array operations instead of iterating

through arrays. If you must use nested loops, focus your optimization efforts on the

innermost loop, which gets called the most times.

Use existing functions instead of writing your own

If there is an intuitive operation you would like to perform on an array, chances

are that NumPy or another library already has a function that does it. Python

and NumPy functions have already been optimized, and are usually many times

faster than the equivalent you might write. We saw an example of this in Lab ??

where we compared NumPy array multiplication with our own matrix multiplication

implemented in Python.

Use generators when possible

When you are iterating through a list, you can often replace the list with a generator.

Instead of storing the entire list in memory, a generator computes each item as it
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is needed. For example, the code

>>> for i in range(100):

>>> print i

stores the numbers 0 to 99 in memory, looks up each one in turn, and prints it. On

the other hand, the code

>>> for i in xrange(100):

>>> print i

uses a generator instead of a list. This code computes the first number in the

specified range (which is 0), and prints it. Then it computes the next number

(which is 1) and prints that.

It is also possible to write your own generators. See https://docs.python.org/

2/tutorial/classes.html#generators and https://wiki.python.org/moin/Generators

for more information.

In our example, replacing each range with xrange does not speed up qr2() by

a noticeable amount.

Avoid excessive function calls

Function calls take time. Moreover, looking up methods associated with objects

takes time. Removing “dots” can significantly speed up execution time.

For example, we could rewrite our function to reduce the number of times we

need to look up the function la.norm().

def qr2(A):

norm = la.norm

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = norm(Q[:, i])

Q[:, i] = Q[:, i]/R[i, i]

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-R[i, j]*Q[:,i]

return Q, R

Once again, an analysis with %prun reveals that this optimization does not help

significantly in this case.

Write Pythonic code

Several special features of Python allow you to write fast code easily. First, list

comprehensions are much faster than for loops. For example, replace

>>> mylist = []

>>> for i in xrange(100):

>>> mylist.append(math.sqrt(i))

https://docs.python.org/2/tutorial/classes.html#generators
https://docs.python.org/2/tutorial/classes.html#generators
https://wiki.python.org/moin/Generators
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with

>>> mylist = [math.sqrt(i) for i in xrange(100)]

When it can be used, the function map() is even faster.

>>> mylist = map(math.sqrt, xrange(100))

The analog of a list comprehension also exists for generators, dictionaries, and sets.

Second, swap values with a single assignment.

>>> a, b = 1, 2

>>> a, b = b, a

>>> print a, b

2 1

Third, many non-Boolean objects in Python have truth values. For example,

numbers are False when equal to zero and True otherwise. Similarly, lists and

strings are False when they are empty and True otherwise. So when a is a number,

instead of

>>> if a != 0:

use

>>> if a:

Use Cython

We will discuss Cython at the end of this lab.

Use a more efficient algorithm

The optimizations discussed thus far will speed up your code at most by a constant.

They will not change the complexity of your code. In order to reduce the complexity

(say from O(n2) to O(n log(n))), you typically need to change your algorithm.

When to Stop

You don’t need to apply every possible optimization to your code. When your code

runs acceptably fast, stop optimizing.

Cython

Cython code is basically Python with extra type declarations. This code is then

compiled into C, which—depending on the details—can run much faster than the

Python equivalent. In this lab we will introduce Cython as a language and discuss

how it can be used to speed up Python code.
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Compiling Cython

With a few exceptions, every Python program is also a Cython program. For

example, suppose you save the following script as cymodule.pyx.

import numpy as np

from scipy import linalg as la

def qr(A):

norm = la.norm

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = norm(Q[:, i])

Q[:, i] = Q[:, i]/R[i, i]

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-R[i, j]*Q[:,i]

return Q, R

To compile this code as Cython, we need to write another script, call it setup.py.

1 from distutils.core import setup

from Cython.Build import cythonize

3

setup(name="cymodule", ext_modules=cythonize('cymodule.pyx'))

setup.py

To run the setup script, type the following in the command line. 2

>>> python setup.py build_ext --inplace

Now start up IPython in the same directory where you ran the setup script. You

can import cymodule just as if it were a Python module.

>>> import cymodule

>>> cymodule.qr(A)

Speeding up Cython with type declarations

So far, our Cythonized qr() function does not run any faster than the Python

version. 3 The simplest way to take advantage of the C-compilation is to declare

data types, as you would in a C program. All Cython data types and their NumPy

equivalents are listed in Table 15.1.

In our example, when we declare the index j to be an int, the inner for loop

is pushed into C (instead of Python), speeding up our code immensely. We do this

by modifying cymodule.pyx as follows.

2Note that python in this line will need to refer to your version of Python that comes with
Cython. Often, you will need to replace python with a path pointing to a specific distribution of
Python.

3Sometimes you will see speedup immediately after Cythonizing a Python function.



159

Cython Type NumPy Type Description

float float32 32 bit floating point number

double float64 64 bit floating point number

float complex complex64 64 bit floating point complex number

double complex complex128 128 bit floating point complex number

char int8 8 bit signed integer

unsigned char uint8 8 bit unsigned integer

short int16 16 bit signed integer

unsigned short uint16 16 bit unsigned integer

int int32 32 bit signed integer

unsigned int uint32 32 bit unsigned integer

long int32 or int64 32 or 64 bit signed integer (depends on

platform)

unsigned long uint32 or uint64 32 or 64 bit unsigned integer (depends

on platform )

long long int64 64 bit signed integer

unsigned long long uint64 64 bit unsigned integer

Table 15.1: Numeric types available in Cython.

...

def qr():

cdef int j

ncols = A.shape[1]

Q = A.copy()

...

We could also declare i to be an int, but the effect of doing so is negligible.
After modifying cymodule.pyx, we must recompile it by running the script

setup.py, and then re-import it into Python. When we profile this function, we
see that it is indeed a good deal faster than its Python cousin, and all the speed up
is in the function itself (where the for loops are).

...

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.949 0.949 0.961 0.961 {cymodule.qr}

...

Similarly, you can speed up function calls in Cython by declaring the types of

some or all of the arguments.

def myfunction(double arg1, int arg2, arg3):

...

A caution

NumPy’s array methods are usually faster than a Cython equivalent you could code

yourself. If you are unsure which method is fastest, time them.
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Moreover, a good algorithm written with a slow language (like Python) is faster

than a bad algorithm written in a fast language (like C). Hence, focus on writing

fast algorithms with good Python code, and only use Cython when and where it is

necessary.

Problem 1. Practice profiling and optimizing functions you have already

written. Some suggested functions are listed below.

• LU decomposition (Lab 5).

• Householder triangularization or Hessenburg decomposition (Lab 7).

• Givens triangularization (Lab 8)

• Image Segmentation (Lab 9)

• Eigenvalue Solvers (Lab 10)

Your solution should include a before and after profiling of the function. It

should also include a list of changes, the reasoning behind the changes, and

the effect of the changes on runtime.

It is possible that you will not be able to speed up the function signif-

icantly. Remember it is more important for code to be readable than to

execute quickly.

More on Cython (Optional)

This section has a more complete introduction to Cython. For another reference,

see http://docs.cython.org/src/tutorial/cython_tutorial.html.

Compilation

Cython code is usually written in a .pyx file, which is then compiled to C. Next the

C is compiled to a Python extension written in machine code. Figure 15.1 shows

how Cython code is compiled and called.

These two compilations (first to C and then to a Python extension) are accom-

plished by the script setup.py discussed earlier in this lab.

1 from distutils.core import setup

2 from Cython.Build import cythonize

4 setup(name="cymodule", ext_modules=cythonize('cymodule.pyx'))

setup.py

The call to cythonize() compiles cymodule.pyx to C, and the call to setup()

converts the C code to a Python extension.

http://docs.cython.org/src/tutorial/cython_tutorial.html
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Compiled to run
using Python objects
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C Code Generated
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Figure 15.1: A diagram showing how Cython code is compiled and called. The path

from calling a Cython function in a Python file to its evaluation is shown in red.

Note

You can learn more about the Python/C balance in your Cython file with the

following line.

>>> cython -a cymodule.pyx

This will generate a html file that you can open with your web browser. It will

show the lines that use Python in bright yellow and lines that use C in white.

Cython code can be compiled and imported to IPython with the Cython magic

function. Load this function with the following command. 4

>>> \%load_ext Cython

Now you can define any Cython function in the command line by prefacing it with

%%cython.

>>> \%\%cython

>>> import numpy as np

>>> from scipy import linalg as la

>>> def qr():

>>> cdef int j

>>> ...

4In older versions of IPython and Cython, you may need to use the command %load_ext

cythonmagic.
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Type Declarations

Type declarations make Cython faster than Python because a computer can process

numbers faster when it knows ahead of time what type they are. Declaring a variable

type in Cython makes the variable a native machine type instead of a Python object.

You can initialize a variable when it is declared or afterwards. It is possible to

initialize several variables at once, as demonstrated below.

# Declare integer variables i, j, and k.

# Set k equal to 2.

cdef int i, j, k=2

cdef:

# Declare and initialize m equal to 4 and n equal to 5.

int m=4, n=5

# Declare and initialize e equal to 2.71.

double e = 2.71

# Declare a double precision complex number a.

double complex a

Warning

Unlike Python integers, which can be arbitrarily large, Cython integers can

overflow.

Arrays in Cython

You can also declare types for arrays. Doing so produces a typed memoryview, or

Cython array. As with ordinary variables, typed memoryviews can be initialized

when they are declared or later.

# Define a NumPy array

A = np.linspace(0,1,6)

# Create typed memoryviews on A and B

cdef double[:] cA = A

cdef int[:,:] cB

# Initialize cB

cB = np.array([[1,2],[3,4],[5,6]], dtype=np.dtype("i"))

Accessing single entries from a memoryview is faster than accessing entries of a

NumPy array. Also, passing slices of a memoryview to a Cython function is fast.

However, memoryviews do not support mathematical operations. These must be

performed on NumPy objects, or by looping through the arrays.

Note

Memoryviews can be passed as arguments to most NumPy functions. Numpy
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includes functions for all common arithmetic operations. For example, you

can add typed memoryviews with c = np.add(a, b). This may or may not be

faster than looping through the array.

Compiler Directives

When you access elements of an array, Cython checks that the indices are within

bounds. Cython also allows negative indexing the same way Python does. These

features slow down code execution. After a program has been carefully debugged,

they may be removed via compiler directives.

Compiler directives in Cython can be included as comments or function deco-

rators. Directives included in comments will apply to the whole file, while function

decorators will only apply to the function immediately following. The comments to

turn off bounds checking and negative indices are

# cython: boundscheck=False

# cython: wraparound=False

To use the function decorators, first import the cython module by including the line

cimport cython in your import statements. The decorators are

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

Cython has many other compiler directives, including cdivision. When cdivision

is set to True, the % operator returns a number with the sign of the first argument

(like in C). Also, division by 0 will no longer raise a ZeroDivisionError, which will

increase the speed of your program.

More on functions in Cython

Speed up function calls in Cython by declaring the types of some or all of the

arguments.

def myfunction(double[:] X, int n, double h, items):

...

If we pass in a NumPy array for the argument X, Cython will convert it to a typed

memoryview before it enters the function. However, if we pass in a NumPy array

for items, it will remain a NumPy array in the function. Both typed and untyped

arguments can be made into keyword arguments.

Cython also allows you to make C functions that are only callable within the C

extension you are currently building. They are not ported into the Python names-

pace. These functions are declared using the same syntax as in Python, except the

keyword def is replaced with cdef. The keyword cpdef combines def and cdef by

creasting two versions of the function: one for Python and one for C.

You can also specify the return type for functions declared using cdef and cpdef,

as in the code below.
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cpdef int myfunction(double[:] X, int n, double h, items):

...

Some examples

The following Python function computes the dot product of two 1-D arrays.

def pydot(A, B):

tot = 0.

for i in xrange(A.shape[0]):

tot += A[i] * B[i]

return tot

A C equivalent can be compiled from the following Cython code.

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

def cydot(double[:] A, double[:] B):

cdef double tot=0.

cdef int i

for i in xrange(A.shape[0]):

tot += A[i] * B[i]

return tot

Figure 15.2 compares the speed of pydot(), cydot(), and the dot() method of a

NumPy array.

For a second example, we will write functions which compute AAT from A. That

is, given A, these functions compute B where B[i,j] = dot(A[i],A[j]).

Here is the Python solution.

def pyrowdot(A):

B = np.empty((A.shape[0], A.shape[0]))

for i in xrange(A.shape[0]):

for j in xrange(i):

B[i,j] = pydot(A[i], A[j])

B[i,i] = pydot(A[i], A[i])

for i in xrange(A.shape[0]):

for j in xrange(i+1, A.shape[0]):

B[i,j] = B[j,i]

return B

Here is the Cython solution. We changed the function cydot() to a C function

since it will only be called by cyrowdot(). Also, the Cython solution uses a typed

memoryview of its input.

import numpy as np

cimport cython

# cython: boundscheck=False

# cython: wraparound=False

cdef double cydot(double[:] A, double[:] B):

cdef double tot=0.
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Figure 15.2: The running times ofpydot(), cydot(), and the dot() method of a NumPy

array on vectors of length “Array Size.” The Cython version runs almost as fast as

the version built into NumPy.

cdef int i, n=A.shape[0]

for i in xrange(n):

tot += A[i] * B[i]

return tot

def cyrowdot(double[:,:] A):

cdef double[:,:] B = np.empty((A.shape[0], A.shape[0]))

cdef int i, j, n=A.shape[0]

for i in xrange(n):

for j in xrange(i):

B[i,j] = cydot(A[i], A[j])

B[i,i] = cydot(A[i], A[i])

for i in xrange(n):

for j in xrange(i+1, n):

B[i,j] = B[j,i]

return np.array(B)

This can also be done in NumPy by running A.dot(A.T). The timings of pyrowdot

(), cyrowdot(), and the NumPy command A.dot(A.T) are shown in Figure 15.3.

In both of these examples, NumPy’s implementation was faster than the version

we wrote in Cython.
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Figure 15.3: The timings of pyrowdot(), cyrowdot(), and the NumPy command A.dot

(A.T). The arrays used for testing were n× 3 where n is shown along the horizontal

axis.

Problem 2.

1. Write the following function in Python.

def pysum(X):

''' Return the sum of the elements of X.

INPUTS:

X - a 1-D NumPy array

''''

2. Rewrite the same function in Cython using a typed for-loop, a typed

memoryview of X, and appropriate compiler directives.

3. Compare the speed of the functions you just wrote, the builtin sum()

function, and NumPy’s sum() function.
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Problem 3. The code below defines a Python function which takes a matrix

to the nth power.

def pymatpow(X, power):

''' Return X^{power}.

INPUTS:

X - A square 2-D NumPy array

power - An integer

'''
prod = X.copy()

temparr = np.empty_like(X[0])

size = X.shape[0]

for n in xrange(1, power):

for i in xrange(size):

for j in xrange(size):

tot = 0.

for k in xrange(size):

tot += prod[i,k] * X[k,j]

temparr[j] = tot

prod[i] = temparr

return prod

1. Port pymatpow() to Cython using typed for-loops, typed arrays, and

appropriate compiler directives.

2. Compare the speed of pymatpow(), the function you just wrote, and the

np.dot() function.

NumPy takes products of matrices by calling BLAS and LAPACK, which

are heavily optimized linear algebra libraries written in C, assembly, and

Fortran.

Problem 4. In Lab 5 you wrote a function to compute the LU decomposi-

tion of a matrix.

1. Rewrite this function so it performs every operation element-by-element

instead of using NumPy array operations.

2. Port the function from part (a) to Cython. Use typed for-loops, typed

memoryviews, and appropriate compiler directives. You may assume

that you are only dealing with real arrays of double precision floating

point numbers.

3. Compare the speed of your new solutions to the speed of the NumPy

version you wrote earlier.
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The correct choice of algorithm is more important than a fast implementation.

For example, suppose you wish to solve the following tridiagonal system.

b0 c0 0 0 0 · · · · · · 0

a0 b1 c1 0 0 · · · · · · 0

0 a1 b2 c2 0 · · · · · · 0

0 0 a2 b3 c3 · · · · · · 0
...

...
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . . cn−1

0 0 0 0 0 · · · an−1 bn





d0

d1

d2

d3

...

...

dn


=



x0

x1

x2

x3

...

...

xn


One way to do this is with the general solve method in SciPy’s linalg module.

Alternatively, you could use an algorithm optimized for tridiagonal matrices. The

code below implements one such algorithm in Python.

The final result is stored in x, and c is used to store temporary values.

def pytridiag(a, b, c, x):

'''Solve the tridiagonal system Ad = x where A has diagonals a, b, and c.

INPUTS:

a, b, c, x - All 1-D NumPy arrays.

NOTE:

The final result is stored in `x` and `c` is used to store temporary values.

'''
n = x.size

temp = 0.

c[0] /= b[0]

x[0] /= b[0]

for i in xrange(n-2):

temp = 1. / (b[i+1] - a[i] * c[i])

c[i+1] *= temp

x[i+1] = (x[i+1] - a[i] * x[i]) * temp

x[n-1] = (x[n-1] - a[n-2] * x[n-2]) / (b[n-1] - a[n-2] * c[n-2])

for i in xrange(n-2, -1, -1):

x[i] = x[i] - c[i] * x[i+1]

Problem 5.

1. Port the above code to Cython using typed for-loops, typed memo-

ryviews and appropriate compiler directives.

2. Compare the speed of your new function with pytridiag() and scipy.

linalg.solve(). To compare the first two functions, start with 1000000×
1000000 sized systems. When testing the SciPy algorithm, start with

1000× 1000 systems.

3. What do you learn about good implementation versus proper choice of

algorithm?

Note that an efficient tridiagonal matrix solver is implemented by scipy.
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sparse.linalg.spsolve().


