
Lab 15

Limitations of Floating
Point Computation

Lab Objective: Understand the limitations of floating point numbers and intro-

duce numerical stability.

Introduction

In the last lab we discussed the structure and flexibility of floating point numbers.

Floating point numbers are a remarkably versatile tool for performing computations

that roughly approximate operations on real numbers. In this lab we will see how the

imperfections of floating point numbers can lead to all kinds of trouble. There are

a variety of common errors involved with floating point computations. In order to

safely use floating point computations it is necessary to know what their limitations

are.

We will start by considering a simple example in Cython:

cimport numpy as np

def breakfloat(int n):

cdef np.float32_t a = 2<<26

cdef int i

actual = float(a) + n

for i in range(n):

a += 1

return a, actual

When we run this code for n=2**26 we see that the actual answer is double the

answer returned by adding 1 repeatedly. This is because the floating point number

is large enough that adding 1 to it is, after rounding, equivalent to adding 0. This

is effect is mitigated substantially by the use of double precision floating point

numbers, but it is still a worry.

Problem 1. consider the cython function defined below

from numpy cimport ndarray as ar

cimport numpy as np

157

158 Lab 15. Limitations of Floating Point Computation

import numpy as np

from numpy.random import rand

def sumrand(int size, int number):

takes the sum of <number> of random arrays

with number of elements <size>

cdef np.float32_t tot=0.

cdef ar[np.float32_t] A = np.empty(size, dtype=np.float32)

cdef int i, j

for i in xrange(number):

A[:] = rand(size).astype(np.float32)

for j in xrange(size):

tot += A[j]

return tot

The function call breakfloat2(10**6, 10**3) returns 16777216.0. The answer

should obviously be around 500000000. Why is there such a large error?

How could you fix the function so that it would give the right result?

Various Computational Considerations

There are a wide variety of issues that must be considered when using floating

point numbers. The first thing to notice is that floating point numbers are not

actually stored as decimal representations. When you define a decimal number,

your computer does the best it can to approximate the decimal number given. For

example, when you give your computer a value of .1, the value it actually stores

is 0.1000000000000000055511151231257827021181583404541015625 which is usually

close enough to .1 that the difference goes unnoticed. This is, in a sense, a sort of

round off error. There is usually always a certain amount of error involved in each

floating point computation. The floating point operations on modern computers

are designed to minimize such error, but it will always exist due to the limitations

of floating point representation. The way that computers implement floating point

arithmetic does imply that there is a certain bound on the error introduced in

each operation. The bound that is most common is called ”machine precision”

or ”machine epsilon.” Given two precisely represented floating point numbers the

Fundamental Axiom of Floating Point Arithmetic states that there is an ε with

|ε| ≤ εmachine such that x ∗ y = (xy)(1 + ε) where ∗ denotes a floating point

operation between the two numbers. For single precision floating point numbers

εmachine = 2−24. For double precision it is 2−53. These errors are extremely small,

but a poorly written algorithm can result in massive accumulation of error and

incorrect results. These sort of problems can pop up in all kinds of places. You

must also keep in mind that rounding occurs after each operation. These two effects

can combine to give unexpected results, for example

>>> 3. * .1 - .3

5.551115123125783e-17

>>> 3. * .1 == .3

False

159

These sorts of effects can combine to give somewhat astonishing results, for example,

all of the following should be equivalent. They should all evaluate to 0.

>>> n = 19000001

>>> (5*n)**2 - (4*n)**2 - (3*n)**2 # exact result using integers

0

>>> (5.*n)**2 - (4*n)**2 - (3*n)**2 # added a single decimal point

1.0

>>> (5*n)**2 - (4.*n)**2 - (3*n)**2 # added a single decimal point somewhere else

-1.0

>>> (5.*n)**2 - ((4*n)**2 + (3*n)**2) # added a decimal point and some ←↩
parenthesis

2.0

Notice how four expressions that should, in theory, be equivalent returned four dif-

ferent answers. The change caused by the inclusion of parenthesis is particularly

troublesome because it means that floating point operations are only approximately

associative. This is an example of what is called catastrophic cancellation. Catas-

trophic cancellation occurs when we perform an operation on two floating point

numbers that are already subject to rounding error. it is especially noticeable when

subtracting numbers that are approximately equal. Because different methods of

computation may yield slightly different results it is imperative that equality tests

and comparisons using floating point numbers be carried out with certain toler-

ances. It is all too tempting to do some floating point computation that you would

expect to give a result of 0 and then to test your result with something like

if result == expected:

print "it worked"

and then try to debug a perfectly good bit of code because the way it does its

computations gives a result that is minutely different than what you expect. A test

like this should be replaced with something roughly along the lines of

tolerance = 1E-6

if abs(result - expected) < tolerance:

print "it worked"

For a specific example, consider the square root function given in the previous lab

for 32 bit floating point numbers. The square root given is not a perfect match to

the square root given by the built in square root function, but it can compute the

proper value so that all but the last bit is accurate. To test whether or not the

algorithm converges for randomly generated numbers between 0 and 1 we may be

tempted to do the following

A = rand(10000)

(pysqrtacc32(A, 2) == np.sqrt(A)).all()

Which would return False since some of the values returned by our algorithm may

differ from the built in square root by an extremely small amount regardless of how

many iterations we run. We can test for accuracy properly using something like

A = rand(10000)

(np.absolute(pysqrtacc32(A, 2) - np.sqrt(A)) < 2E-7).all()

160 Lab 15. Limitations of Floating Point Computation

Figure 15.1: Floating point computation of ln(x+1)
x shown with a corresponding

series approximation.

Which returns True.

Problem 2. One example where it is common to subtract numbers that

are nearly equal is in the computation of numerical derivatives. Write a

simple approximation to the derivative of a function f using the formula
f(x+h)−f(x)

h . Check how accurate it is for varying sizes of h by testing it on

the sin function included in Python’s math library with x = 1. Use Python’s

cos function as the exact value of the derivative. What do you notice about

accuracy as h becomes smaller and smaller?

Problem 3. Sometimes clever numerical methods can be used to avoid some

of the issues involved in floating point computations. The value for ln(x+1)
x

can be approximated by the series

∞∑
n=1

(−1)
n+1

n
xn

161

where ‖x‖ ≤ 1. Use this series to obtain a more accurate approximation of
ln(x+1)

x for extremely small floating point numbers. Using the polynomial you

have constructed plot the exact value and the approximation to the function

ln (10−x + 1) 10x. Plot the exact value on [−5, 30]. Plot the approximation

on [1, 30]. Your plot should look roughly like the plot shown in Figure 15.1.

Another limitation of floating point numbers is that they are subject to overflow.

Floating point numbers do have restricted values set aside for values of ∞, −∞,

and Nan, so you can often tell when overflow has occured, but it is best to avoid

extremely large or extremely small floating point values in either case. For a simple

example of overflow, we will perform a computational demonstration that the p-

norms approach the ∞-norm as p→∞.

def pnorm(A, p):

return (A**p).sum()**(1./p)

If you haven’t seen p-norms before, the main thing you need to understand here

is that as p→∞, pnorm(A, p) should come arbitrarily close to np.absolute(A).max().

Testing this computationally, we see that, for a randomly generated array of values

between 0 and 1, we get the plot shown in Figure 15.2 as p→∞.

For floating point numbers, overflow results in a value of ∞ or −∞. Operations

that cannot be well defined (like ∞−∞) return a value of NAN, which stands for

”Not A Number.” When dealing with machine integers, for example integers that

are stored in arrays or integers in programming languages other than Python, there

are no specific values for things likt ∞. The operations can be performed, but

the result will be incorrect. To understand this, first consider an unsigned integer.

Unsigned integers are always considered to be positive. Unsigned integers have no

sign, so each bit is considered a binary digit. In an eight bit unsigned integer there

are 256 possible values. They are used to represent the numbers 0 through 255.

When we pass 255, the numbers cycle back around to 0 again, so, for example:

>>> np.arange(250, 260, dtype=np.uint8)

array([250, 251, 252, 253, 254, 255, 0, 1, 2, 3], dtype=uint8)

>>> np.arange(250, 260, dtype=np.uint8) * 2

array([244, 246, 248, 250, 252, 254, 0, 2, 4, 6], dtype=uint8)

>>> np.arange(250, 260, dtype=np.uint8)**2

array([36, 25, 16, 9, 4, 1, 0, 1, 4, 9], dtype=uint8)

As you can see, the operations can be understood as operations in Z/256Z, which

has operations equivalent to those in Z only some of the time. These sorts of issues

can come up in computations involving integers or even typecasts to integers.

Problem 4. Your friend writes the following Cython code to search for

Pythagorean Triples.

from libc.math cimport sqrt

def find_triple(double start, int num):

cdef int i, j

cdef double temp

162 Lab 15. Limitations of Floating Point Computation

Figure 15.2: The convergence of the p-norms to the ∞-norm for a randomly gener-

ated vector of 100 floating point values in (1, 2). Notice how the p-norms disappear

when p is roughly 1000. This is because values of floating point infinity are intro-

duced into the computation. This is especially troublesome because the array is

nearly at the middle of the range of possible floating point values. If the maximum

were less than 1, the norm would suddenly drop to zero instead of jumping to ∞.

for i in xrange(num):

for j in xrange(i, num):

temp = sqrt((start+i)**2 + (start+j)**2)

if temp == int(temp):

print int(start+i), int(start+j), int(temp)

By running find_triple(600000000, 10000), he claims to have found the triples

600001807 600004043 848532274

600001924 600004742 848532851

600004561 600009787 848538283

600004738 600007261 848536622

What is wrong with his code and how should it be fixed? Be sure to watch

out for any integer overflow along the way.

163

Some Examples of Computation Error

There have been several historical examples where incorrect numerical computing

has caused terrible disasters.

Our first example involves the explosion of the Ariane 5 rocket in 1996. The

Ariane 5 rocket was launched by the European Space Agency. Roughly 7 billion

dollars were spent in its development. The rocket and its cargo were, in themselves,

worth an estimated 500 million dollars. At an altitude of about 3700 meters the

rocket veered off of its intended path and exploded. After some investigation it was

discovered that the error was caused by the conversion of an excessively large 64

bit floating point number to a 16 bit signed integer. To see how this could cause

problems, consider the following example:

>>> from numpy.random import rand

>>> A = rand(10) * 10**5

>>> A.astype(np.int16) # incorrect cast, overflow has occured

array([6691, 24236, -28341, 4104, 18063, -19080, -7500, -4954,

25898, 11995], dtype=int16)

>>> A.astype(np.int64) # what the values should be

array([26802, 64425, 1339, 55901, 51665, 11992, 90368, 87717, 25, 38894], ←↩
dtype=int64)

Keep in mind that a simple error like this caused hundreds of millions of dollars of

damage.

The Vancouver Stock Exchange is another example of a relatively simple propa-

gation of error. When the exchange opened, the index to track its value was initial-

ized at 1000 in January of 1982. Around 3000 times per day the index was updated

and then truncated to three decimals of precision. After 22 months the computed

value was 524.881 when the actual value should have been 1009.811. When it was

discovered that the computation of the index was diminishing it’s value, the index

was reset to its actual value.

Another example which we will not discuss here was the sinking of the Sleipner

A offshore platform in 1991. That disaster was due to improper finite element

analysis. The total loss was estimated at 700 million dollars.

The final example we will consider here is the failure of the Patriot Missile

Defense system at Dharan, Saudi Arabia during the gulf war. In this disaster the

patriot missile system failed to fire on an incoming missile. The missile struck a

barracks, killed 28 people, and injured around 100 others. This failure was due to

improper use of floating point numbers! The system clock was incremented using

every .1 seconds using integers, but the time was then converted back to float by

multiplying by .1 for use in some floating point computations. After 100 hours

of operation the roundoff error in the floating point representation of .1 became

significant enough that it prevented the system from properly targeting an incoming

missile.

Problem 5. In the floating point format used for the Patriot missile systems

in the gulf war the closest floating point number to .1 was 209715
2097152 . Calculate

the error accumulated over 100 hours. If a missile travels at 1676 meters per

164 Lab 15. Limitations of Floating Point Computation

second, how far will it be able to travel in that amount of time?

