
Lab 16

Newton’s Method, Julia
Sets and Basins of
Attraction

Lab Objective: Understand Newton’s Method. Understand definition of basin of

attraction. Basic understanding of Julia Sets.

One important technique in technical computing is Newton’s method. The goal

of Newton’s method is to find x such that f (x) = 0. This method is especially im-

portant in optimization, where our goal is to find minima and maxima of functions.

Newton’s method is an iterative method. In one dimension, it is defined as follows:

xn+1 = xn −
f(xn)

f ′(xn)

Essentially Newton’s method approximates a function by its tangent line, and

then uses the zero of the tangent line as the next guess for xn.

Newton’s method is powerful because of the speed of convergence. In many

cases Newton’s method converges to the actual root quadratically, meaning that

the error term is squared at every iteration. This fast convergence makes it a very

powerful algorithm.

Newton’s method does suffer from the flaw that its convergence is dependent

upon an initial guess. If the initial guess is not sufficiently close the convergence can

be much slower, or may never occur. There are even certain pathological functions

for which newton’s method will never converge.

Problem 1. Write a Newton’s method function that runs whether or not

the user inputs a derivative function. In python this can be done by defining

the derivative function as a keyword argument that defaults to None. Also

accept a maximum of how many iterations it will run and a tolerance used

for the stopping condition. Return a tuple with the computed value and

boolean value telling whether it converged or not.

Compare the performance of Newton’s method when you input the deriva-

tive and when you don’t. How well does each converge? Which runs faster?

Try the following functions:
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Figure 16.1: An illustration of how one iteration of Newton’s method works

• cos(x)

• x2sin( 1
x )

• ( sin(x)
x )− x

• x2 − 1

• x3 − x

For the last two, look at the results of the iteration on equispaced points

between -2 and 2. Which points converge to which roots?

There are also examples of when Newton’s Method does not converge.

Test your newton’s method function on x1/3. Have it test at eqispaced

starting points on a given interval and return the corresponding values after

a given number of iterations. What do you see?

Basins of Attraction and Julia Sets

Thus far we have only noted the fact that Newton’s method converges under good

circumstances. Another topic of interest is determining which starting values con-

verge to which roots. An plot showing which points converge to which roots for the
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Figure 16.2: The plot of f(x) = x2 + x− 2 along with 20 seed values for Newton’s

Method. The green values all converge to the root at -2, and the black values will

converge to the root at 1.

function x2 + x− 2 is shown in Figure 16.2.

It turns out that for f(x) = x2 + x − 2, any seed value will converge to one

root or the other. We call the set of points that converge to a single value through

an iterative process a basin of attraction. We can see in Figure 16.2 a set of seed

values that are color coded to indicate which root they converge to with Newton’s

method.

We now extend these ideas to complex functions. There is an entire field of

mathematics devoted to the study of such functions, but here we only examine

some basic properties as they pertain to the generation of Julia sets. Like other

functions we have thus far been exposed to, a complex function maps an input to a

unique output. However, in this case both the input and the output come from the

space of complex numbers.

Given a sufficiently “nice” complex function, we can apply Newton’s method in

a similar way to how we applied it in the real case. However due to the nature of the

space we are mapping from and to, we no longer have access to the intuitive visual

representations of functions that we saw in the real case. We can, however, graph

the basins of attraction for Newton’s method on the complex plane. For example,

let:

f(z) = z2 − 1

Derivatives for nice complex functions behave much the same way as in the real

case:

f ′(z) = 2z

It is straightforward to verify that f has two roots at 1 and -1.

In order to better visualize basins of attraction in the complex plane we will use

the function lipcolormesh from the pyplot library in matplotlib. The following is
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an example of how to use this function. It allows us to color different portions of a

plane according to the value of a function at each point.

import scipy as sp

from matplotlib import pyplot as plt

n=401

x=sp.linspace(-2,2,n)

y=sp.linspace(-2,2,n)

X,Y=sp.meshgrid(x,y)

def func(x):

return sp.real(x**3-2*x**2-x+2)

C=func(X+complex(0,1)*Y)

plt.pcolormesh(X,Y,C)

plt.show()

Problem 2. Modify your code from Problem 1 to graph the basins of attrac-

tion for a polynomial in the complex plane. Examine the basins of attraction

for the following complex functions on the following domains.

• z3 − 2z2 − 2z + 2 on the set of complex numbers a + bi such that

a ∈
[
− 1

2 , 0
]

and b ∈
[
− 1

4 ,
1
4

]
.

• 3z3 − 2z2 − 2z + 2 on the set of complex numbers a + bi such that

a ∈ [−1, 1] and b ∈ [−1, 1].

• z4 + 3z3− 2z2− 2z+ 2 on the set of complex numbers a+ bi such that

a ∈ [−1, 1] and b ∈ [−1, 1].

• z3 − 1 on the set of complex numbers a+ bi such that a ∈ [−1, 1] and

b ∈ [−1, 1].

Be aware that Newton’s method may not converge for every point in these

intervals, so you will have to manually set the pixels that result in a value of

nan to something else. One good approach is to set the roots of the polynomial

to numbers 0, 1, . . . , k and then set the values of nan to k + 1.

Make sure that when plotting you start with low resolution. Even if you

generate a plot using an array of 100 by 100 points, you will be running

Newton’s method on your test function 10, 000 times, so be careful.

Another well-studied fractal in the complex plane is the Mandelbrot set. It is

defined as the points c ∈ C for which the sequence

zn = z2
n−1 + c

is bounded.

Problem 3. Generate another grid of complex numbers on [−1.5, .5]×[−i, i].
Consider the recurrence relation xn = x2

n−1 + c. Run this iteration 30 times
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with a resolution of 200× 200 and display the plot.


