
Lab 17

Gaussian Quadrature

Recall from the Newton-Cotes integration lab that certain functons will not be

well approximated when we use uniformly spaced points. In this section we will

use unevenly spaced points to mitigate this problem. The technique we will use is

called Guassian Quadrature. Like our previous integration techniques, we choose a

set of points xi and weights wi and approximate∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi).

When we do guassian quadrature, we are required to choose a weight function

W (x). This function determines both the x′is and the w′is. Theoretically, the

weight function determines which set of orthogonal polynomials we are using to

approximate the function we are trying to integrate.

The weight function then determines the interval over which the integration will

occur. For example, if we choose the weight function as W (x) = 1 over [−1, 1],

then we may only integrate functions on [−1, 1]. We can get around this issue by

changing the interval of integration using u-substitution, giving us the following

formula ∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f(
b− a

2
z +

a+ b

2
)dz.

Once we have changed the interval, we may apply quadrature to the integral from

−1 to 1 and then scale it appropriately to get the answer we want.∫ b

a

f(x)dx ≈ b− a
2

∑
i

wif(
(b− a)

2
xi +

(b+ a)

2
)

Problem 1. Let f(x) = x2 on [1, 4]. Then g(x) will be the interval-adjusted

177

178 Lab 17. Gaussian Quadrature

version of f , with W (x) = 1, a = 1, and b = 4. So,

g(x) = f(
b− a

2
x+

b+ a

2
)

=
9

4
x2 +

15x

2
+

25

4

and the interval-adjusted integral of f(x) will be

G(x) =
b− a

2

∫
f(
b− a

2
x+

b+ a

2
)dx

=
9

8
x3 +

45

8
x2 +

75

8
x

Verify that evaluating G(1)−G(−1) =
∫ 4

1
f(x)dx.

Write a function that will accept a function f and an interval [a, b] and

return a function g on [−1, 1] that has the same integral (scaled by a constant)

as f . Use it to plot f on [1, 4] and (b−a)
2 g on [−1, 1]. Note that the functions

will not look the same plotted, since they are defined over intervals with

different lengths but they integrate to the same value.

We will now give an example with known weights and points. We will use the

constant weight function W (x) = 1 from −1 to 1. This weight function corresponds

to the Legendre polynomials. We will calculate the integral of f(x) = sin(x) from

−π to π with 5 interpolation points.

First, we change the interval from [−π, π] to [−1, 1].

import numpy as np

a, b = - np.pi, np.pi

#f is the function that we want to integrate

f = np.sin

#g is the function with the interval changed

g = lambda x: f((b - a) / 2 * x + (a + b) / 2)

The weights and points are given in order in Table 17.1. We put them into an

array here.

from math import sqrt

points = np.array([- sqrt(5 + 2 * sqrt(10. / 7)) / 3,

- sqrt(5 - 2 * sqrt(10. / 7)) / 3,

0,

sqrt(5 - 2 * sqrt(10. / 7)) / 3,

sqrt(5 + 2 * sqrt(10. / 7)) / 3])

weights = np.array([(322 - 13 * sqrt(70)) / 900,

(322 + 13 * sqrt(70)) / 900,

128. / 225,

(322 + 13 * sqrt(70)) / 900,

(322 - 13 * sqrt(70)) / 900])

179

point xi weight wi

− 1
3

√
5 + 2

√
10
7

322−13
√

70
900

− 1
3

√
5− 2

√
10
7

322+13
√

70
900

0 128
225

1
3

√
5− 2

√
10
7

322+13
√

70
900

1
3

√
5 + 2

√
10
7

322−13
√

70
900

Table 17.1: Quadrature points and weights on [−1, 1].

We now calculate the integral

integral = (b - a)/2 * np.inner(weights, g(points))

Problem 2. Write a function that accepts a function f, an array of points,

an array of weights, and limits of integration and returns the integral. Don’t

forget to adjust the interval as in the above example.

Now, how do we find the weights and the points? There are many publications

that will give lists of points for various weight functions. We will demonstrate

how to find such a list using the Golub-Welsch algorithm. This algorithm builds

a tri-diagonal matrix. The points are then the eigenvalues. The weights are the

length of [a, b] times the first coordinate of each eigenvector squared. We note

that finding eigenvalues for a tridiagonal matrix is a well conditioned, relatively

painless problem. Using a good eigenvalue solver gives the Golub-Welsch algorithm

a complexity of O(n2).

There is some interesting theory required to understand this algorithm. We only

provide a brief sketch here and point the reader to the paper at http://gubner.

ece.wisc.edu/gaussquad.pdf for further details. We mentioned that the choice of

the weight function corresponds to a class of orthogonal polyomials. An important

fact about orthogonal polynomials is that any set of orthogonal polynomials {ui}Ni=1

satisfies a three term recurrence relation

ui(x) = (γi−1x− αi)ui−1(x)− βiui−2(x)

where u−1(x) = 0 and u0(x) = 1. The coefficients {γk, αi, βi} have been calculated

for several classes of orthogonal polynomials, and may be determined for an arbi-

trary class using the procedure found in “Calculation of Gauss Quadrature Rules”

by Golub and Welsch. Using these coefficients we may create a tri-diagonal matrix

http://gubner.ece.wisc.edu/gaussquad.pdf
http://gubner.ece.wisc.edu/gaussquad.pdf

180 Lab 17. Gaussian Quadrature

J =



a1 b1 0 0 ... 0

b1 a2 b2 0 ... 0

0 b2 a3 b3 ... 0
...

...
...

...

0 ... bN−1

0 ... bN−1 aN


Where ai = −βi

αi
and bi = (γi+1

αiαi+1
)

1
2 . This matrix is called the Jacobi matrix.

Derivation of the Jacobi matrix can also be found in the Golub-Welsch paper. The

eigenvalues of this matrix give us the points xi and the length of [a, b] times the

squares of the first entries of the corresponding eigenvectors gives the weights.

Problem 3. Write a function that will accept three arrays representing the

coefficients {γi, αi, βi} from the recurrence relation above and return the

Jacobi matrix.

Problem 4. The coefficients of the Legendre polynomials (which correspond

to the weight function W (x) = 1 on [−1, 1] are given by

αi =
2i− 1

i

βi = 0

γi =
i− 1

i

Write a function that accepts an integer n representing the number of

points to use in the quadrature. Calculate γ, α, and β as above, find the

Jacobi matrix, then use it to find the points xi and weights wi that correspond

to this weight function. When n = 5, do they match the ones given in the

first part of this lab?

There do exist other techniques for finding the weights and points for a given

weighting function. This is, in fact, not even the fastest method. In general practice,

we may use scipy.integrate to calculate integrals. scipy.integrate.quadrature offers a

reasonably fast Gaussian quadrature implementation.

Another common hallmark of quadrature is that it can be used adaptively. It

is common in practice to refine the points of a quadrature estimate on an interval

where a function is observed to be changing rapidly. This allows for more accurate

computation at a relatively low computational cost. This is the approach used by

the function scipy.integrate.quad.

181

Problem 5. The standard normal distribution is an important object of

study in probability and statistic. It is defined by the density function
1√
2π
e−x

2/2. (Here we are assuming a mean of 0 and a variance of 1). This is

a function that can not be integrated symbollically. We can use quadrature

integration to estimate the probability that a normally distributed random

variable will take a value below a given point. The probability that the ran-

dom variable we are considering is less than (or equal to) a given value x

is ∫ x

−∞

1√
2π
e−t

2/2dt

This function is essentially zero for values of x that lie reasonably far from

the mean, so we can estimate this probability by integrating from −5 to x

instead.

Use scipy.integrate.quad to write a function to estimate the probability

that this normally distributed random variable will take a value less than a

given number x that lies relatively close to the mean. Compare your result

at x = 1 with the output of the code

from scipy.stats import norm

N = norm()

N.cdf(1)

