
Lab 17

Newton-Cotes Integration

Lab Objective: Explain Newton-Cotes Integration

One of the fundamental problems in calculus is integration. However, in the

vast majority of cases it is impossible to integrate functions analytically. In these

cases our only option is to approximate the integral numerically.

One of the most natural approaches is to use the trapezoidal rule. This approach

approximates the integral of a function by using the average of its values at the left

and right endpoints of the interval of integration:∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2

This approach is equivalent to approximating the integral by integrating the

linear interpolant of the function. For an illustration see Figure 17.1

A few questions rise naturally about the trapezoidal rule. The first is, how good

is our approximation? It turns out, that for a twice differentiable function the error

is equal to:

error =
(b− a)3

12
f (2)(ξ) where ξ ∈ [a, b]

Thus, the error is proportional to both (b− a)3 and the second derivative. The fact

that the error is proportional to the value of the second derivative makes sense: the

trapezoidal rule cannot compensate for a function having non-zero second derivative.

How can we more accurately approximate the integral of a function? One tech-

nique is to break our interval into many smaller sub-intervals. This is known as a

composite rule. We will delay discussion of composite rules momentarily and discuss

a different approach first.

Note that the trapezoidal rule is really just approximating the integral by inte-

grating the linear interpolant of the function. Suppose instead that we approximate

our function with a higher-order interpolant. We can write this method mathemat-

ically as follows:∫ b

a

f(x)dx ≈
∫ b

a

n∑
j=1

Lj(x)f(xj)dx =

n∑
j=1

f(xj)

∫ b

a

Lj(x)dx

171

172 Lab 17. Newton-Cotes Integration

Figure 17.1: Demonstration of approximating the integral
∫ 1

0
(1 − x4)dx using the

trapezoidal rule. The shaded area is the area approximated by the trapezoidal rule,

and the actual function is given in red.

We can analytically pre-compute the value of wj =
∫
Lj(x) for a given set of

interpolation points {xj} and thus write our approximation as∫ b

a

f(x)dx ≈
∑
j

wjf(xj)

A set of points xj and corresponding weights wj are known as a quadrature rule.

Note that this method will exactly integrate polynomials of order n− 1 (where

n is the number of points). This is because the polynomial interpolant (
∑
Ljf(xj))

will exactly match the function f .

Using three evenly-spaced points we can (using a little algebra) derive the fol-

lowing integration rule:∫ b

a

f(x)dx ≈ (b− a)

6
(f(x1) + 4f(x2) + f(x3))

This is known as Simpson’s Rule. We can implement Simpson’s rule in Python

as follows:

>>> def SimpsonsRule(func, a, b):

>>> return ((b-a)/6.0)*sum(sp.array([1,4,1])*func(sp.array([a,(a+b)/2.0,b])))

173

We can test this function on sin(x) as follows:

>>> import scipy as sp

>>> SimpsonsRule(sp.sin, 0, sp.pi)

2.0943951023931953

The answer, which we can find analytically, is 2. For only evaluating the function

at three points this is fairly accurate.

Problem 1. Two higher-order quadrature rules are the Simpson 3/8 rule

and Boole’s rule. They can be written in the following formulae:∫ b

a

f(x)dx ≈ (b− a)

8
(f(x1) + 3f(x2) + 3f(x3) + f(x4))∫ b

a

f(x)dx ≈ (b− a)

90
(7f(x1) + 32f(x2) + 12f(x3) + 32f(x4) + 7f(x5))

Write functions that implements these quadrature rules.

Another tool of great importance in numerical integration is composite quadra-

ture rules. These rules break up the interval into many smaller sub-intervals. A

desired quadrature rule is then applied to each sub-interval, and the results are

summed together. Mathematically we can write such an approach as follows:∫ b

a

f(x)dx =

n∑
i=0

∫ xi+1

xi

f(x)dx

where a = x0 < x1 < . . . < xn = b. We then apply some rule (such as Simp-

son’s rule, or the trapezoid rule) to each smaller integration problem. A graphical

illustration of such an approach is shown in Figure 17.2

Let’s look at how the composite Simpson’s rule would work. We divide our in-

terval of integration into n sub-intervals (and thus we have n+1 interval endpoints).

To use Simpson’s rule on each sub-interval we will need the n midpoints of each

subinterval. Thus we have points x1 . . . x2n+1. Of these points, the midpoints are

precisely the even indices. Now recall that Simpson’s Rule is:∫ b

a

f(x)dx ≈ (b− a)

6
(f(x1) + 4f(x2) + f(x3))

Applying this to each sub-interval we get the following:∫ b

a

f(x)dx ≈ (b− a)

6n

(
f(x1) +

n∑
i=1

4 ∗ f(x2i) +

n−2∑
i=0

2 ∗ f(x1+2i) + f(x2n+1)

)

The initial constant is because each sub-interval has width (b − a)/6n. The

different weights on each function evaluation f(xi) are justified as follows: each sub-

interval midpoint gets weight of four by Simpson’s rule, and sub-interval endpoints

174 Lab 17. Newton-Cotes Integration

Figure 17.2: Demonstration of approximating the integral
∫ 1

0
(1−x4)dx using a com-

posite trapezoidal rule. The shaded area is the area approximated by the composite

rule, and the actual function is given in red.

that aren’t either a or b get counted twice because they belong to sub-intervals to

their left and right.

Problem 2. Implement Simpson’s, Simpson’s 3/8 and Boole’s composite

rules as Python functions. Require the user to input the number of sub-

intervals. Now test your function by integrating x1/3 on the interval [0, 1]

(which you can analytically solve).

One other important technique is what is known as Adaptive Quadrature. It is

clear in Figure 17.2 that we have approximated the integral better in some places

than in others. In fact on the left side of the interval the approximation by linear

interpolants is almost indistinguishable from the actual function, while on the right

the approximation clearly introduces more significant errors. Adaptive Quadrature

methods attempt to identify locations where the error is bad and subdivide only

those areas.

One way to approximate the error of a particular integral is to use a composite

rule. For example (is we let S([a, b]) denote the output of Simpson’s rule on a

specific interval)

175

Error(S([a, b])) ≈ |S([a, c]) + S([c, b])− S([a, b])|

Where c = a+b
2 . We can then decide if the error is appropriately small, and split

the interval if it is not. By repeating this process recursively we can achieve the

higher accuracy of a very fine composite quadrature rule while only evaluating the

function in areas of interest.

This error indicator is very crude, and many other indicators have been proposed.

However, they can become complicated relatively quickly, so we won’t discuss them

here.

Problem 3. Write a function that uses an adaptive version of Simpson’s

rule. The user should input the maximum error. It should use a recursion.

You will have to divide the error between sub-intervals.

