
Lab 1

The Standard Library

Lab Objective: Become familiar with the Python standard library

Python has a very rich set of tools available by default. There are about 80 built-

in functions that are always present in any Python environment. In addition to these

80 core functions, the standard library includes thousands of useful functions that

cover almost every imaginable need. Python has a “batteries included” philosophy

that makes many complex tasks almost trivial to implement using the standard

library.

The standard library is comprised of over a hundred different modules. Python

modules are simply Python source files where classes, functions, and variables are

defined. We can import any Python source file as a module and access the objects

defined in it. In this lab, we will look at the modules available in the Python

standard library and at other built-in functions. The official documenation for the

standard library can be found at https://docs.python.org/2/library/.

File Objects in Python

One of the built-in functionalities of Python is working with files. Python has

a useful file object which acts as an interface to all kinds of different streams.

Streams are simply sequences of data. File objects are created using the built-in

open command.

f = open('filename.txt','r')
This will iterate through your entire file and print each line.

for line in f:

print line

f.close()

The open command accepts up to three arguments, or parameters: filename,

mode, and buffering. The mode determines the kind of access to use when opening

the file. Possible mode strings are:

'r' Opens a file for read-only access. This is the default mode.

3

https://docs.python.org/2/library/

4 Lab 1. Standard Library

Attribute Description

closed True if file object is closed.

mode The access mode used to open the file object.

name The name of the file.

Method Description

close() Flush any delayed writes and close the file object.

flush() Flush any delayed writes. File object remains open.

read() Read the next string of the file.

readline() Read a line of the file.

readlines() Read lines of the file until end of file.

seek(offset) Place the file pointer at a certain position within the file.

tell() Return the current position of the file pointer.

write() Write a string to the file.

writelines() Write a sequence of strings to the file.

Table 1.1: File object attributes and methods.

'w' Opens a file for write-only access. This mode creates the file if it doesn’t

already exist, and overwrites everything in the file if it does exist.

'a' Opens a file for appending. The file pointer is at the end of the file, so any data

already in the file will not be overwritten. Creates a new file if none exists.

There are also two possible modifiers for the mode: b (binary) and + (read-write

access). Binary mode will open the file as-is, without any newline conversions. The

plus mode will open a file for reading and writing. It is important to know that the

modes r+ and w+ are not equivalent. If your file cannot be opened for any reason, an

exception is raised (usually an IOException). Every file object has several attributes

and methods (Table 1.1).

Instead of using f = open, we usually open files using with. Notice that when we

use the with command we don’t have to explicitly close the file; the moment we exit

the with block, the file is automatically closed safely. We generally prefer to use the

method below because it guarantees that our files will be closed properly, even if

an unexpected error occurs.

with open('filename.txt', 'r') as f:

for line in f:

print line

To write to a file, we do something similar to the following.

num = 17

with open('output.txt', 'w') as f:

f.write("My favorite number: ")

You can only write strings to a file, so you must convert non-string data ←↩
to string format using the str() command before writing it to the file.

f.write(str(num))

Note that we can declare variables inside the with block that are accessible

outside that block.

5

Read your file using a with statement.

with open('filename.txt', 'r') as f:

read_data = f.read()

read_data is accessible outside of the with-block.

print read_data

Problem 1. Throughout this lab, we will write a script that simulates the

Hunger Games tournament. The Hunger Games is a popular novel about

a dystopian society where each year boys and girls (called “tributes”) from

different districts compete to the death in a tournament of survival. Attached

with this lab is a text file named events.txt that has a list of events that might

occur during a Hunger Games tournament. Write a function that reads in

this file and returns a list of the events.

When you read in the file for the first time you may notice that the

character ‘\n’ appears after every event. This happens because in the text

file the events are on different lines, which the file object interprets as ‘\n’

after every event. To get rid of these characters use the .strip() method. For

example:

with open('filename.txt', 'r') as f:

for line in f:

print line.strip()

Note: Throughout this lab, keep your code in a .py file and run it

from command line (use the command python filename.py), especially as you

progress to later problems. You can still test solutions in an IPython note-

book, but this will allow you to use all of the modules in this lab.

Namespaces and Importing Modules

Names are a fundamental concept in Python. What we normally call variables in

other languages are names in Python, but with a few key differences. Names act

as labels for Python objects in memory. An object can have one or more names.

a = 5

b = [1, 2, 3, 4]

In the code above, we define two Python objects in memory: an integer and a list.

We attach the name a to the integer object and the name b to the list object. If we

make the assignment a = b, the names a and b now both point to the same list object

in memory. Since functions in Python are simply objects, we can assign names for

those too!

def func():

return 42

f = func

6 Lab 1. Standard Library

Whenever we want to call func(), we can call f() instead.

A namespace is simply a collection of names. A module in Python is simply a

Python file. Each module gets its own namespace, so every name in that namespace

must be unique. You can think of a module as simply a collection of names as-

signed to various Python objects. Since every module has its own namespace, these

namespaces are completely isolated; we can therefore have a function with the same

name in two different modules without problems arising. The main Python program

gets a special namespace called __main__. The name of a namespace is stored in the

__name__ attribute. This is incredibly useful for checking to see if a namespace we

are in has been imported, or is being run directly by the interpreter.

if __name__ == "__main__":

print "I am being run from the python interpreter."

elif __name__ != "__main__":

print "I have been imported by another python module."

print __name__

There are three ways to import names from a module.

import module [as alias] This will import a module’s namespace into the main

namespace. We can also use as alias to define an optional alias if the module

name is longer than we would prefer to type repeatedly. The method names

in the module are accessed by module.name.

Import the module 'numpy', a scientific computing package.

'np' is the alias name.

import numpy as np

'linspace' is a method in the numpy module.

np.linspace(0, 10, 10)

from module import name [as alias] This will import a particular method name in

the module directly into the main namespace. This might replace a name in

the main namespace if the imported name is not unique. The names imported

this way can be accessed directly by name.

Import the 'pyplot' method from the 'matplotlib' module

from matplotlib import pyplot as plt

from module import * This will import all names in the module’s namespace directly

into the main namespace. This form is generally considered bad practice as it

completely circumvents all the protections that namespaces provide, and can

lead to many unknown name conflicts. Do not do this.

When importing modules it is good practice to put all of your import statements

at the top of the script, and not scattered throughout or inside of functions.

Warning

Be careful when importing modules using the from module import item syntax.

Consider the following scenario. Suppose we defined the following two func-

7

tions in a file named my functions.py.

def min(seq):

return 0

def max(seq):

return 1

We import the functions into our main program as follows

from my_functions import min, max

Calculate the median value of a sequence.

def calc_median(seq):

return (min(seq)+max(seq))/2.

Suddenly our main program doesn’t work as expected anymore! What hap-

pened? The functions min() and max() are defined in the core Python language.

However, when we imported the functions from our module, we overwrote

Python’s built-in min() and max() functions. Now, whenever we call min(), it

will always return 0! In this case, there is no way to revert back to the Python

functions without restarting the interpreter (in IPython, you restart the ker-

nel). This is a classic example of name collisions.

sys Module

In Python we will sometimes want to write standalone scripts that are executed

from command line instead of the Python interpreter. The sys module helps with

this by allowing us to access information specific to the system running Python.

For example, we often import sys to get the list sys.argv which is a list of

arguments passed to the current environment. It can be useful to access these

values when writing programs that are run from command line. Many programs are

written to execute differently based on the various arguments and options specified

at execution. Here is an example.

1 import sys

2

def square(n):

4 return n*n

6 if __name__ == '__main__':
Print the name of the program.

8 print sys.argv[0]

Set n equal to the number passed as the first argument.

10 n = float(sys.argv[1])

print square(n)

square.py

When we run the script from the command line with a single argument, the code

will print the name of the program along with the square of the number passed as

the first argument. If we execute the following script from the command line as

follows:

8 Lab 1. Standard Library

python square.py 4

We should get the following output.

square.py

16.0

Problem 2. As part of the Hunger Games simulation, we will write the

proceedings of each day to a file. The name of the file will be given as an ar-

gument in command line when the Python script simulating the tournament

is called. When calling the script from command line the input should look

something like this:

python hunger.py output.txt

hunger.py is the name of the script you are writing and output.txt is the

name of the file (not yet created) where we will write the output of the

tournament. In this problem, print the name of the file passed in (output.txt)

to make sure the script recognizes the argument. Don’t forget to import the

sys module.

csv Module

We will now look at a very useful module from the standard library for reading

and writing data as comma separated values. We commonly use comma separated

value (CSV) files to exchange data between databases and tables. The csv module

provides reader and writer objects. DictReader and DictWriter are analagous objects

that use dictionaries to handle data.

Using these reader and writer objects, we can define the format of our CSV file.

Contrary to what the name implies, CSV files can be delimited with any character.

A delimiter is the special character that separates fields in a line. Commas are

typical, but tabs and spaces are two other popular delimiting characters.

Set the delimiter to tabs.

csv_reader = csv.reader(csv_file, delimiter='\t')

We can also define the characters that separate fields, terminate lines, escape

special characters, and enclose strings (quotechar. The csv module refers to these

special settings as dialects. The module comes with two dialects ready to use, excel

(Windows Excel formatting) and excel-tab (Excel formatting, but tab-delimited).

Change the formatting dialect to excel.

csv_reader = csv.reader(csv_file, dialect='excel')
Modify the formatting characters.

csv_reader = csv.reader(csv_file, quotechar='*', lineterminator='\n')

9

To print the contents of a CSV file, test.csv, we do the following. A CSV reader

will parse each line of a CSV file into a list of items.

import csv

Open test.csv as read-only.

with open('test.csv', 'r') as csv_file:

Create a csv reader object.

csv_reader = csv.reader(csv_file)

Work with the reader object alone.

for line in csv_reader:

print line

Writing with a CSV writer object is very similar to writing with a regular file

object. Notice that we only need to pass a sequence of items to the CSV writer.

The CSV writer will take care of formatting things properly before writing it to the

CSV file. The following code demonstrates how this may be done.

contents = [["Column 1", "Column 2", "Column 3"],

[0,1,2], [3, 2, 1], [4,5,2], [68, 38, 99]]

Open test_out.csv as a write-only file.

Be careful! This will overwrite test_out.csv if it already exists.

with open('test_out.csv', 'w') as csv_file:

Create a csv writer object.

csv_writer = csv.writer(csv_file)

Here, record is a loop variable that represents the rows.

for record in contents:

Write rows using the writer object.

csv_writer.writerow(record)

Problem 3. Attached with this lab is a CSV file that contains two columns.

The first column lists the male tributes and the second column lists the female

tributes for the Hunger Games. Using the CSV module, write a function that

reads in both columns and seperates the male and female tributes into two

lists. Return the lists. Don’t forget to import the CSV module.

Hint: We can access the different columns using a for loop with the

following code:

for male, female in csv_reader:

math Module

The math module and its companion, cmath (for complex numbers), are very valuable

modules. Common mathematical functions are defined in these modules, including

cos, sin, log, and sqrt.

import math

Return the sine of 4 radians.

10 Lab 1. Standard Library

math.sin(4)

To learn more about the cmath module, see the official Python documentation

at https://docs.python.org/2/library/cmath.html.

Problem 4. Import the math module and cmath module. Write a function

that prints out both the complex and floating point results for
√

5. What

are the results for
√
−5?

random Module

The random module contains many helpful functions for obtaining random numbers.

These “random” numbers are not actually completely random; however, they are

seemingly-random enough for most applications. Some of the more commonly used

methods of the random module are shown below.

>>> import random

Get a random integer from the interval [5, 12].

>>> random.randint(5, 12)

Get a random integer from a range of integers [5, 12).

>>> random.randrange(5, 12)

#Get a floating point number between 0.0 and 1.0

random.random()

Get a random element from a sequence.

In this example, random.choice will return a character from the string given.

>>> random.choice("This is a sentence")

Get a random sample of length n from a sequence.

>>> random.sample(range(50), 10)

>>> [21, 25, 9, 30, 22, 41, 12, 26, 47, 5]

Randomly shuffle a sequence in place.

>>> R = range(15)

>>> random.shuffle(R)

>>> print R

[7, 9, 13, 3, 5, 8, 10, 2, 0, 6, 4, 11, 1, 12, 14]

Note

The random module has functions that can sample from a variety of different

statistical distributions including uniform, normal, beta, gamma, exponential,

and so on. To learn more about random numbers in Python see the documen-

tation at https://docs.python.org/2/library/random.html.

https://docs.python.org/2/library/cmath.html
https://docs.python.org/2/library/random.html

11

Problem 5. Each contestant of the Hunger Games must survive each day

if they are to win. Write a function that creates a list of 24 random floating

point numbers between 1.0 and 10.0. The numbers in this list will be used

later as the likelihood of the tributes surviving an event.

itertools Module

Itertools is a very powerful module in the Python standard library. It is built

around the concept of generators and iterators. The functions in itertools are

fast and memory efficient and are designed to be used as building blocks in larger

functions. This efficiency is especially important in Python, where code is generally

executed more slowly than in a compiled language like C or Fortran.

Generators

Before discussing this module, you need to understand what a generator is, and the

difference between generators and iterators.

Lists, tuples, sets and dictionaries are all examples of sequences in Python. It

is frequently useful and necessary to visit all the elements of a sequence once; the

process of doing so is called iteration. Each of the Python types we have mentioned

define their own iterators, which you use every time you execute the statement

for <elem> in <sequence>.

Python also has a special type of iterator object called a generator. Like a

standard iterator, a generator returns a sequence of values, but unlike a standard

iterator, which computes an entire sequence and returns values from it, a generator

computes and returns the next value in the sequence each time it is called and

discards the previous values. It never has to store all the values in a sequence.

When is this helpful?

• Iterating through only part of a sequence. It is inefficient to create an entire

sequence if we know that we will not need all of it. Representing the sequence

as a generator can avoid excess memory use and computation.

• Iterating through a sequence once. Consider the statement sum([i for i in

range(1000) if i%2 == 0]). We are creating two sequences just to iterate through

each them once and never use them again. We can make this more efficient

using generators: sum(i for i in xrange(1000) if i%2 == 0) Notice that we have

used syntax similar to a list comprehension. The line (i for i in xrange(1000)

if i%2 == 0) will define a generator object similar to the list made by [i

for i in xrange(1000) if i%2 == 0]. The solution using generators will often

execute faster, and it will almost always be more memory efficient. Consider

using generators for any function that reduces a sequence to a single value.

Examples of such functions are min(), max(), and sum().

• Calculating large sequences. A sequence must be stored somewhere in com-

puter memory. If the sequence is large, we could exhaust all available memory.

12 Lab 1. Standard Library

• Calculations involving infinite sequences. Pre-computed sequences are neces-

sarily finite; we simply cannot do computations involving infinite sequences

with normal iterators. We cannot create a list that stores all natural numbers,

but we can create a generator that returns the next natural number every time

it is called.

Now that we understand what generators are and why they are important, we

can discuss how to create and use them. Python uses the yield keyword to define a

generator. As an example, consider the following, where we re-implement Python’s

range function as an iterator and a generator.

def range_iter(start, stop, step=1):

i = start

r = []

while i < stop:

r.append(i)

i = i + step

return r

def range_gen(start, stop, step=1):

i = start

while i < stop:

yield i

i = i + step

These two functions look similar, but they behave very differently. The first function

when executed will build a list one element at a time until finished, at which point

it will return the entire list. On the author’s computer, this function takes about

1.43ms to build and returns a list of 10000 elements. If we build the entire list using

the generator function then the result is only marginally better, returning the 10000

elements in approximately 1.09ms.

But if we iterate through the list compared to the generator, we see a huge

difference the first time each is called. The first function requires 1.43ms to execute

the first time. The second function, a mere .00000041ms! The reason for this is that

the first function calculates its results and returns them all at once. The second

function only creates a generator object.

Generator objects have several methods. The most important and most useful

method is the next() method. Every time this method is called, the generator

resumes from its previous state and computes the next value in the sequence. After

computing and yielding this value, the generator is suspended until next is called

again.

When you are writing for loops, you should use a generator whenever it is reason-

able to do so. The xrange() function that is built into Python 2.7 is a generator-based

version of range() and is generally faster when used in for loops; you should make

a habit of using xrange() instead of range(). In a for loop, you can use xrange() the

same way you would use range().

13

Generator Example

count() Count to infinity

cycle() Cycle through a sequence indefinitely

repeat() Repeat the input element indefinitely (or up to n times)

chain() chain('ABC', 'DEF') --> A B C D E F

compress() compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F

islice() islice('ABCDEFG', 2, None) --> C D E F G

imap() imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000

izip() izip('ABCD', 'xy') --> Ax By

product() Return the Cartesian product of two iterables

permutations() Return permutations of a sequence

combinations() Return combinations of a sequence

Table 1.2: Popular generators in itertools module.

Note

In Python 3, range is a generator by default, and when you actually need a

list you must use something like list(range(x)), where x is an integer.

In general, the generators in itertools are used like this:

import itertools

a = itertools.count(5)

Returns natural numbers, starting at 5, increasing by 1 each time next() is ←↩
called.

a.next()

Note that while count() takes an integer as input, most generators work over

iterables, or any Python object that can be iterated through; this includes strings,

lists, tuples, and so on.

Useful Generators in itertools

The itertools module contains three main types of generators: infinite generators,

shortest sequence generators, and combinatoric generators. Some common gen-

erators are summarized in Table 1.2. Note that islice is particularly useful for

efficiently iterating through only part of a sequence. For the argument values of

and further information about these generators, as well as recipes for other use-

ful generators, see the documentation at http://docs.python.org/2/library/

itertools.html

collections Module

This module defines several specialized data structures to use in addition to the

built-in Python data structures.

http://docs.python.org/2/library/itertools.html
http://docs.python.org/2/library/itertools.html

14 Lab 1. Standard Library

Named tuples are designed to help improve code readability in some cases. Stan-

dard tuples in Python are accessed by index while named tuples allow access via

index or by fieldname (which defines the tuple elements and acts like a key).

>>> from collections import namedtuple

Initialize namedtuple with typename of 'Stats'
Use namedtuple('typename', 'fieldname1, fieldname2, etc.')
>>> player = namedtuple('Stats', 'shots, assists')

>>> playerA = player(18,12)

>>> playerA

>>> Stats(shots=18, assists=12)

Access 'shots' for playerA

>>> playerA.shots

18

A double-ended queue, or deque (pronounced “deck”), can be thought of as a

deck of cards. Inserting and removing elements from either end is highly efficient.

Python’s deque implementation only allows insertions at the left and right ends of

the data structure (which is standard for deques). This differs from a list, which

allows insertions anywhere, but is very inefficient for all but right end insertions.

>>> from collections import deque

>>> d = deque(range(10))

>>> d.appendleft(-1)

>>> print d

deque([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> d.rotate(1)

>>> print d

deque([9, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

Counter objects are very efficient at counting items. They behave like a Python

dictionary. Counts are allowed to be any integer, including 0 and negative values.

>>> from collections import Counter

>>> letter_count = Counter()

>>> for char in "Mississippi":

>>> letter_count[char] += 1

>>> letter_count

Counter({'i': 4, 's': 4, 'p': 2, 'M': 1})

Ordered dictionaries are exactly like standard dictionaries except for one impor-

tant difference: ordered dictionaries remember the order in which key-value pairs

were added to the data structure. When iterating over an ordered dictionary, the

items are returned in the order they were added from first to last.

15

>>> from collections import OrderedDict

>>> d = OrderedDict()

>>> d['a'] = 1

>>> d['b'] = 2

>>> print d

OrderedDict([('a', 1), ('b', 2)])

For further information and examples of how to use these container objects, see

section 8.3 of the official Python tutorial (https://docs.python.org/2/library/

collections.html).

Problem 6. In order to organize the tributes competing in the Hunger

Games tournament, create a named tuple that contains information about

each of the tributes including their name, district and gender. Then create

a list named “tributes” that will hold all of the named tuples.

To do this, write a function that pairs the male and female tributes by

district. Use the izip() generator from the itertools module together with

the built-in function enumerate. The enumerate function provides an easy way

to assign numbers in a for loop. Put all together, the for loop should look

something like this:

for d, t in enumerate(itertools.izip(males, females),1):

tributes.append(Tribute(t[0], d, "M"))

tributes.append(Tribute(t[1], d, "F"))

where “Tribute” is the named tuple, “d” is the current district number

provided by enumerate (starting at 1), and t is the izip() generator contain-

ing the male, female pair. Return the tributes list. The list should contain

24 named tuples, each one representing a tribute.

timeit Module

This module is used to time the execution of small bits of Python code. It is helpful

to time lines of code in Python using the timeit module because it avoids a number

of common pitfalls in measuring execution time; for example, it limits errors caused

by startup and shutdown times by running the code repeatedly. In IPython, we

usually time code using the built-in %timeit function. Prefacing a line of code with

%timeit times that line; to time an entire cell of code, preface it with %%timeit.

However, this will not work in all environments, notably in a command line setting,

so it is important to know how to time code without the %timeit function.

We will now define a function that times the execution of another function f

and returns the minimum runtime for one call of f. This will be useful in other

labs when you are asked to time the execution of your solutions. Before we can do

https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html

16 Lab 1. Standard Library

this, however, we need to know what a wrapper function is. A wrapper function

wraps a function and its arguments into a function object that can be called by the

timeit function. In Python, this is done by declaring a lambda function, which is a

temporary, anonymous function.

import timeit

time_func takes as its arguments the name of a function f, a tuple of the

arguments of f, a dictionary of the keyword arguments of f, and two

keyword arguments.

def time_func(f, args=(), kargs={}, repeat=3, number=100):

Wrap f into pfunc.

pfunc = lambda: f(*args, **kargs)

Define an object T that times pfunc once.

T = timeit.Timer(pfunc)

Time f several times, return the name of f and the minimum runtime.

try:

Repeat is also a timeit module function

t = T.repeat(repeat=repeat, number=int(number))

runtime = min(t)/float(number)

return runtime

Print an error statement if something goes wrong.

except:

T.print_exc()

In the above code you may have noticed a try and except block. How this works

is Python attempts to run the code following try and if that fails it skips to the

except block and runs the code that is found there. In the above case if Python fails

to run the code following try, it will jump to the except block and print an error

message.

Remember that keyword arguments are arguments that are given a default value

in the function declaration after the positional (non-keyword) arguments, but can be

overwritten. Therefore, when calling time_func, the dictionary of keyword arguments

of f (where the names of the keyword arguments are the keys) is optional, and so

are the keyword arguments of time_func itself. repeat defines the number of times

to test the code, while number defines the number of times the code is run per test.

If your code is small and simple, you can set the value of number very high without

causing problems, but for bulky, slower code, number will need to be smaller, or you

may have to wait a long time to get your timing results.

Here is an example of how you would use the above function in a script.

We will time how long it takes to run the following function.

def square(x):

return x**2

Call time_func where 4 is the parameter we are passing into 'square'.
Notice that 4 is put in brackets.

time_func(square, [4])

For further information on the timeit module, see the documentation at http:

//docs.python.org/2/library/timeit.html.

http://docs.python.org/2/library/timeit.html
http://docs.python.org/2/library/timeit.html

17

Problem 7. Write two functions that will rotate the elements of a deque

(from the collections module) and a list respectively.

1. Use the rotate method of a deque.

2. Use a for-loop to rotate a list.

To rotate the list, remove elements from the right end one by one and

insert them on the left end one by one. Compare the timings you obtain

from a deque and a list of 10000 elements, using the timer function defined

in this section. Rotate all elements of the list and deque so that your final

sequence is the same as when you started.

Problem 8. Throughout this lab we have worked on simulating the Hunger

Games tournament using the standard library and other built-in functions

found in Python.

To piece everything together, write a function that takes in as parameters

the list of events, the random list created in Problem 5, and the list of tributes

created in Problem 6.

To simulate the game, you will need to do at least the following. For each

day of the simulation, each (surviving) tribute will experience one event per

day. Each event should be randomly chosen from the list of events you read

from the text file. To determine the survival of a given tribute, randomly

generate a real number between 1.0 and 10.0. If the random number is greater

than the likelihood of surviving the event, then the tribute survives the event

for that day. Note that the likelihood of surviving the event comes from the

list of random numbers generated in Problem 5. So the nth tribute/survivor

will survive if their random number is greater than the nth element of the

list of likelihoods from Problem 5.

After each day, write the results of the competition to a file using the file

object from the first part of this lab:

with open('output.txt', 'w') as f:

The file output.txt is the name of the file you should have passed in from

Problem 2 using the sys module. Write to the file the names of the survivors

along with what events they survived, as well as the names of those who

didn’t survive and their associated events.

Make sure that you initialize your file object outside any loops, so that

you don’t completely overwrite your file each time you loop.

Stop the simulation when there is at most one surviving tribute and print

the winner to standard output (it will appear in the console) and to your file.

It is possible that there are no surviving tributes. If there are no surviving

18 Lab 1. Standard Library

tributes, indicate so in your outputs.

Keep in mind good coding practice as you solve this problem. Use com-

ments to document what your code is doing, and most importantly, plan out

how you are going to approach the problem before you actually start coding.

Specifications

We suggest that you submit your solutions.py file using the following format.

1 import math

2 import cmath

import random

4 import timeit

import csv

6 import collections as col

import itertools

8 import sys

10 # Problem 1

12 def read_events():

Read in the file 'events.txt'.
14 # Return a list of the events.

pass

16

Problem 2

18

Using the sys module, print the filename 'output.txt' to screen.

20 # 'output.txt' is an argument passed in at command line.

In practice, this part would be better to put at the bottom of your script.

22

Problem 3

24

def read_tributes():

26 # Using the csv module, read in the male and female tributes.

Return two lists, one list containing the male tributes and

28 # one list containing the female tributes.

pass

30

Problem 4

32

def sqrt_variants(n):

34 # Print floating point squareroot.

Print complex squareroot.

36 pass

38 # Problem 5

40 def random_list():

Create and return a list of 24 random floating-point numbers

42 # between 1.0 and 10.0 that represent the likelihood of a tribute

surviving an event.

44 pass

46 # Problem 6

def pair_tributes(males, females):

19

48 # The parameters 'males' and 'females' are the lists from Problem 3.

Create a named tuple called "Tribute".

50 # Return a list of 24 named tuples, each representing a tribute.

pass

52

Problem 7

54

Initialize deque D, with 10000 elements.

56 # Initialize list L, with 10000 elements.

58 def rotate_deque(D):

In this function use the deque object's rotate method.

60 pass

def rotate_list(L):

62 pass

Print timing for rotate_deque.

64 # Print timing for rotate_list.

66 # Problem 8

def HungerSim(events, likelihoods, tributes):

68 # Parameters are:

events - list of events from Problem 1.

70 # likelihoods - the list of random numbers from Problem 5.

tributes - the list of tributes from Problem 6.

72 # Write the results of each day to the 'output.txt' file.

pass

74

Example of possible file output for the last two days:

76 '''
Day 3

78 Silver Herriot experienced Tracker Jackers and survived.

Hammil Odinshoot experienced Wild Deer and died.

80 End of Day 3

82 Day 4

The final tribute was the girl from District 4: Silver Herriot

84

'''
86

Example of possible final output to console:

88 '''
The final tribute was the girl from District 4: Silver Herriot

90 '''

solution specs.py

