
Lab 3

Intro to pandas I

Lab Objective: Become acquainted with the data structures and tools that pandas

offers for data analysis.

In volumes 1 and 2, we solved data problems primarily using NumPy and SciPy.

While extremely flexible and useful tools, these libraries lack some of the high-level

data-analytic abstractions present in other popular data packages like R and Stata.

We now turn our attention to pandas, a Python library that is more specifically

built for data analysis.

Data Structures in pandas

Just as NumPy is built on the ndarray data structure suited for efficient scientific and

numerical computation, pandas is centered around a handful of core data structures

custom built for data analysis. These data structures include the Series, DataFrame,

and Panel, which correspond roughly to one, two, and three-dimensional arrays. We

will explore the first two data structures in some detail. The interested reader can

learn more about the Panel data structure (the least-used one in pandas) in the

online documentation.

Series

The Series is a one-dimensional array with labeled entries. The values of the array

may be any data type, including integers, strings, or general Python objects. Fur-

ther, the array need not be homogeneous. That is, it can hold values of different

data types. Together, the array values are referred to as the data of the Series. The

labels must consist of hashable types, and are most commonly integers or strings.

Together, the labels are referred to as the index of the Series.

Thus, a Series consists of data and an index. The most basic way to initialize

such an object is as follows:

>>> import pandas as pd

>>> s = pd.Series(data, index=index)
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We don’t need to explicitly define the index. The default index is simply np.arange

(len(data)).

For example, we can create a Series containing the integers from 9 down to 0:

>>> s1 = pd.Series(range(9, -1, -1))

>>> s1.values #the data

array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

>>> s1.index #the labels

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
>>> s1 #left column is index, right column is data

0 9

1 8

2 7

3 6

4 5

5 4

6 3

7 2

8 1

9 0

dtype: int64

Here is an example where we create customized labels:

>>> import numpy as np

>>> data = np.random.randn(3)

>>> index = ['first', 'second', 'third']
>>> s2 = pd.Series(data, index=index)

>>> s2

first 1.661255

second -0.033570

third -2.185991

dtype: float64

We can create a Series having constant values in the following manner:

>>> val = 4 #desired constant value of Series

>>> n = 6 #desired length of Series

>>> s3 = pd.Series(val, index=range(n))

>>> s3

0 4

1 4

2 4

3 4

4 4

5 4

dtype: int64

It is also possible to use a Python dictionary when creating a Series:

>>> d = {'e1': 93, 'e2': 95, 'e3': 87, 'e4': 82, 'e5': 94}

>>> s4 = pd.Series(d)

>>> s4

e1 93

e2 95

e3 87

e4 82

e5 94
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dtype: int64

Note that we didn’t need to specify the index; the keys of the dictionary are used

as the index for the Series. There are many more ways to create Series objects.

For a more complete discussion of how to create Series objects, see the online

documentation.

Problem 1. Create the following pandas Series.

• Constant array with value -3, length 5. Labels should be the first five

positive even integers.

• Data is given by the dictionary {'Bill': 31, 'Sarah': 28, 'Jane': 34, '

Joe': 26}.

DataFrame

The DataFrame data structure is a two-dimensional generalization of the Series. It

can be viewed as a tabular structure with labeled rows and columns. The row labels

are collectively called the index, and the column labels are collectively called the

columns. An individual column in a DataFrame object is a Series.

There are many ways to initialize a DataFrame. In the following, we build a

DataFrame out of a dictionary of Series.

>>> x = pd.Series(np.random.randn(4), ['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), ['a', 'b', 'd', 'e', 'f'])
>>> d = {1: x, 2: y}

>>> df1 = pd.DataFrame(d)

>>> df1

1 2

a -0.924259 -0.708301

b 0.767422 -2.214516

c 0.399212 NaN

d 0.130365 -2.352364

e NaN 0.789419

f NaN -0.859482

Note that the index of this DataFrame is the union of the index of Series x and that

of Series y. The columns are given by the keys of the dictionary d. Since x doesn’t

have a label e, the value in row e, column 1 is NaN. This same reasoning explains the

other missing values as well. Note that if we take the first column of the DataFrame

and drop the missing values, we recover the Series x:

>>> x == df1[1].dropna()

a True

b True

c True

d True

dtype: bool
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Warning

A Pandas DataFrame cannot be sliced the same way a NumPy array could.

Notice how we just used df1[1] to access the first column of the the DataFrame

df1. We will discuss this in more detail later on.

We can also initialize a DataFrame using a NumPy array, creating custom row and

column labels:

>>> data = np.random.random((3, 4))

>>> pd.DataFrame(data, index=['A', 'B', 'C'], columns=range(1, 5))

1 2 3 4

A 0.065646 0.968593 0.593394 0.750110

B 0.803829 0.662237 0.200592 0.137713

C 0.288801 0.956662 0.817915 0.951016

3 rows 4 columns

As with Series, if we don’t specify the index or columns, the default is range(n),

where n is either the number of rows or columns.

It is also possible to create multi-indexed arrays, for example:

>>> grade=['eighth', 'ninth', 'tenth']
>>> subject=['math', 'science', 'english']
>>> myindex = pd.MultiIndex.from_product([grade, subject], names=['grade', '←↩

subject'])
>>> myseries = pd.Series(np.random.randn(9), index=myindex)

>>> myseries

grade subject

eighth math 1.706644

science -0.899587

english -1.009832

ninth math 2.096838

science 1.884932

english 0.413266

tenth math -0.924962

science -0.851689

english 1.053329

dtype: float64

Multi-indexing is visually convenient, but not strictly necessary for most ap-

plications. The interested reader is invited to explore the documentation to learn

more.

Data I/O

Being able to import and export data is a fundamental skill in data science. Unfor-

tunately, with the multitude of data formats and conventions out there, importing

data can often be a tricky task. The pandas library seeks to reduce some of the dif-

ficulty by providing file readers for various types of formats, including CSV, Excel,

HDF5, SQL, JSON, HTML, or pickle files.

Because CSV files are one of the most popular file formats for exchanging data,

we will explore the read_csv function in more detail. To learn to read other types
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of file formats, see the online pandas documentation. To read a CSV data file into

a DataFrame, call the read_csv function with the path to the CSV file, along with the

appropriate keyword arguments. Below we list some of the most important keyword

arguments:

• delimiter: This argument specifies the character that separates data fields,

often a comma or a whitespace character.

• header: The row number (starting at 0) in the CSV file that contains the

column names.

• index_col: If you want to use one of the columns in the CSV file as the index

for the DataFrame, set this argument to the desired column number.

• skiprows: If an integer n, skip the first n rows of the file, and then start reading

in the data. If a list of integers, skip the specified rows.

• names: If the CSV file does not contain the column names, or you wish to use

other column names, specify them in a list assigned to this argument.

There are several other keyword arguments, but this should be enough to get you

started.

When you need to save your data, pandas allows you to write to several different

file formats. A typical example is the to_csv function method attached to Series and

DataFrame objects, which writes the data to a CSV file. Keyword arguments allow

you to specify the separator character, omit writing the columns names or index,

and other options. The code below demonstrates its typical usage:

>>> df.to_csv("my_df.csv")

Viewing and Accessing Data

Once we have our data ready to go in pandas, how can we interact with it? In this

section we will explore some elementary access, plotting, and querying techniques

that enable us to maneuver through and gain insight into our data.

Basic Data Access

Some of the basic slicing paradigms in NumPy carry over to pandas. For example,

we can slice a Series using the usual syntax:

>>> s = pd.Series(np.random.randn(5))

>>> s[1:3]

1 3.188112

2 0.080191

dtype: float64

Notice that both the data and the index are sliced in this manner.

Likewise, we can slice the rows of a DataFrame much as with a two-dimensional

NumPy array:
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>>> df = pd.DataFrame(np.random.randn(4, 2), index=['a', 'b', 'c', 'd'], columns ←↩
= ['I', 'II'])

>>> df[:2]

I II

a 0.758867 1.231330

b 0.402484 -0.955039

[2 rows x 2 columns]

More generally, we can select subsets of the data using the .iloc and .loc meth-

ods. The .loc method selects rows and columns based on their labels, while the

.iloc method selects them based on their integer position. It is interesting to know

that accessing Series and DataFrames using these indexing operations is more effi-

cient than using bracket indexing. Since Series and DataFrames can be accessed by

a numerical index or by label, the bracket indexing has to check many cases before

it can determine how to slice the data structure. By using loc/iloc explicitly, you

bypass all of the extra checks.

>>> # select rows a and c, column II

>>> df.loc[['a','c'], 'II']

a 1.231330

c 0.556121

Name: II, dtype: float64

>>> # select last two rows, first column

>>> df.iloc[-2:, 0]

c -0.171938

d -0.814336

Name: I, dtype: float64

Finally, a column of a DataFrame may be accessed using simple square brackets and

the name of the column:

>>> # get second column of df

>>> df['II']

a 1.231330

b -0.955039

c 0.556121

d 0.173165

Name: II, dtype: float64

All of these techniques for getting subsets of the data may also be used to set

subsets of the data:

>>> # set second columns to zeros

>>> df['II'] = 0

>>> df['II']

a 0

b 0

c 0
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d 0

Name: II, dtype: int64

Plotting

Plotting is often a much more effective way to view and gain understanding of a

dataset than simply viewing the raw numbers. Fortunately, pandas interfaces well

with matplotlib, allowing relatively painless data visualization.

We start by plotting a Series. Doing so is easy, as the Series object is equipped

with its own plot function. Let’s start with visualizing a simple random walk. By

way of background, a random walk is a stochastic process used to model a non-

deterministic path through some space. It is a useful construct in many fields and

can be used to explain things like the motion of a molecule as it travels through

a liquid to modeling or the fluctuations of stock prices. Here we will simulate a

one-dimensional symmetric random walk on the integers, which can be described

as follows.

1. Start at 0.

2. Flip a fair coin.

3. If heads, move one unit to the right. Otherwise, move one unit to the left.

4. Go to Step 2.

How can we simulate this random walk efficiently? Note that the walk is really

characterized by the outcomes of the coin flip. If we represent heads by the number

1 and tails by −1, then our position at a given moment is just the cumulative sum

of all previous outcomes. Below, we simulate a sequence of coin flips, build the

resulting random walk, and plot the outcome.

>>> import matplotlib.pyplot as plt

>>> N = 1000 # length of random walk

>>> s = np.zeros(N)

>>> s[1:] = np.random.binomial(1, .5, size=(N-1,))*2-1 #coin flips

>>> s = pd.Series(s)

>>> s = s.cumsum() # random walk

>>> s.plot()

>>> plt.ylim([-50, 50])

>>> plt.show()

The random walk is shown in Figure 3.1.

Problem 2. Create five random walks of length 100, and plot them to-

gether.

Next, create a “biased” random walk by changing the coin flip probability

of head from 0.5 to 0.51. Plot this biased walk with lengths 100, 10000, and

then 100000. Notice the definite trend that emerges. Your results should be



32 Lab 3. Intro to pandas I

Figure 3.1: Random walk of length 1000.

Figure 3.2: Biased random walk of length 100 (above) and 10000 (below).

comparable to those in Figure 3.2.

Using DataFrames, one can also plot one column against another.

>>> xvals = pd.Series(np.sqrt(np.arange(1000)))

>>> yvals = pd.Series(np.random.randn(1000).cumsum())

>>> df = pd.DataFrame({'xvals': xvals, 'yvals': yvals})

>>> df.plot(x='xvals', y='yvals') # specify x and y values

>>> plt.show()

The result is displayed in Figure 3.3.

A variety of other types of plots are possible. One of the more useful plots
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Figure 3.3: Graph generated when one coordinate is taken from the xvals column

and the other from the yvals column.

Figure 3.4: Histogram of two columns of a DataFrame.

when trying to estimate or visualize the distribution of data is a histogram. The

code listed below demonstrates how to generate a histogram for each column in a

DataFrame, with the result shown in Figure 3.4.

>>> col1 = pd.Series(np.random.randn(1000)) #normal distribution

>>> col2 = pd.Series(np.random.gamma(5, size=1000)) #gamma distribution

>>> df = pd.DataFrame({'normal': col1, 'gamma': col2})

>>> df.hist()

>>> plt.plot()
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SQL Operations in pandas

The DataFrame, being a tabular data structure, bears an obvious resemblance to a

typical relational database table. SQL is the standard for working with relational

databases, and in this section we will explore how pandas accomplishes some of the

same tasks as SQL. The SQL-like functionality of pandas is one of its biggest advan-

tages, since it can eliminate the need to switch between programming languages for

different tasks. Within pandas we can handle both the querying and data analysis.

For the following examples, we will use this data:

>>> #build toy data for SQL operations

>>> name = ['Bill', 'Alice', 'Joe', 'Jenny', 'Ted', 'Taylor', 'Tracy', 'Morgan', ←↩
'Liz']

>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]

>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']
>>> ID = range(9)

>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]

>>> mathID = [0, 1, 5, 6, 3]

>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]

>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age, '←↩

Class': rank})

>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})

>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major': major})

Before querying our data, it is important to know some of its basic properties,

such as number of columns, number of rows, and the datatypes of the columns.

This can be done by simply calling the info method on the desired DataFrame:

>>> mathInfo.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4

Data columns (total 3 columns):

Grade 5 non-null float64

ID 5 non-null int64

Math_Major 5 non-null object

dtypes: float64(1), int64(1), object(1)

Now let’s look at the pandas equivalent of some SQL SELECT statements.

>>> # SELECT ID, Age FROM studentInfo

>>> studentInfo[['ID', 'Age']]

>>> # SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> otherInfo[otherInfo['Financial_Aid']=='y'][['ID', 'GPA']]

>>> # SELECT Math_Major, COUNT(*) FROM mathInfo GROUP BY Math_Major

>>> print mathInfo.groupby('Math_Major').size()

Problem 3. The example above shows how to implement a simple WHERE

condition, and it is easy to have a more complex expression. Simply enclose
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each simple condition by parentheses, and use the standard boolean operators

& (AND), | (OR), and ~ (NOT) to connect the conditions appropriately. Use

pandas to execute the following query:

SELECT ID, Name from studentInfo WHERE Age > 19 AND Sex = 'M'

Next, let’s look at JOIN statements. In pandas, this is done with the merge

function, which takes as arguments the two DataFrame objects to join, as well as

keyword arguments specifying the column on which to join, along with the type

(left, right, inner, outer).

>>> # SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = mathInfo.←↩
ID

>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default

Age Class ID Name Sex Grade Math_Major

0 20 Sp 0 Bill M 4.0 y

1 21 Se 1 Alice F 3.0 n

2 22 Se 3 Jenny F 4.0 n

3 20 J 5 Taylor F 3.5 y

4 20 J 6 Tracy M 3.0 n

[5 rows x 7 columns]

>>> # SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo on otherInfo.ID =←↩
mathInfo.ID

>>> pd.merge(otherInfo, mathInfo, on='ID', how='outer')[['GPA', 'Grade']]
GPA Grade

0 3.8 4.0

1 3.5 3.0

2 3.0 NaN

3 3.9 4.0

4 2.8 NaN

5 2.9 3.5

6 3.8 3.0

7 3.4 NaN

8 3.7 NaN

[9 rows x 2 columns]

Problem 4. Using a join operation, create a DataFrame containing the ID,

age, and GPA of all male individuals. You ought to be able to accomplish

this in one line of code.

Be aware that other types of SQL-like operations are also possible, such as

UNION. When you find yourself unsure of how to carry out a more involved SQL-

like operation, the online pandas documentation will be of great service.

Analyzing Data

Although pandas does not provide built-in support for heavy-duty statistical anal-

ysis of data, there are nevertheless many features and functions that facilitate basic
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data manipulation and computation, even when the data is in a somewhat messy

state. We will now explore some of these features.

Basic Data Manipulation

Because the primary pandas data structures are subclasses of the ndarray, they are

valid input to most NumPy functions, and can often be treated simply as NumPy

arrays. For example, basic vectorized operations work just fine:

>>> x = pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), index=['a', 'b', 'd', 'e', 'f'])
>>> x**2

a 1.710289

b 0.157482

c 0.540136

d 0.202580

dtype: float64

>>> z = x + y

>>> z

a 0.123877

b 0.278435

c NaN

d -1.318713

e NaN

f NaN

dtype: float64

>>> np.log(z)

a -2.088469

b -1.278570

c NaN

d NaN

e NaN

f NaN

dtype: float64

Notice that pandas automatically aligns the indexes when adding two Series (or

DataFrames), so that the the index of the output is simply the union of the indexes of

the two inputs. The default missing value NaN is given for labels that are not shared

by both inputs.

It may also be useful to transpose DataFrames, re-order the columns or rows, or

sort according to a given column. Here we demonstrate these capabilities:

>>> df = pd.DataFrame(np.random.randn(4,2), index=['a', 'b', 'c', 'd'], columns=[←↩
'I', 'II'])

>>> df

I II

a -0.154878 -1.097156

b -0.948226 0.585780

c 0.433197 -0.493048

d -0.168612 0.999194

[4 rows x 2 columns]

>>> df.transpose()

a b c d

I -0.154878 -0.948226 0.433197 -0.168612
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II -1.097156 0.585780 -0.493048 0.999194

[2 rows x 4 columns]

>>> # switch order of columns, keep only rows 'a' and 'c'
>>> df.reindex(index=['a', 'c'], columns=['II', 'I'])

II I

a -1.097156 -0.154878

c -0.493048 0.433197

[2 rows x 2 columns]

>>> # sort descending according to column 'II'
>>> df.sort(columns='II', ascending=False)

I II

d -0.168612 0.999194

b -0.948226 0.585780

c 0.433197 -0.493048

a -0.154878 -1.097156

[4 rows x 2 columns]

Basic Statistical Functions

The pandas library allows us to easily calculate basic summary statistics of our

data, useful when we want a quick description of the data. The describe function

outputs several such summary statistics for each column in a DataFrame:

>>> df.describe()

I II

count 4.000000 4.000000

mean -0.209630 -0.001308

std 0.566696 0.964083

min -0.948226 -1.097156

25% -0.363516 -0.644075

50% -0.161745 0.046366

75% -0.007859 0.689133

max 0.433197 0.999194

[8 rows x 2 columns]

Functions for calculating means and variances, the covariance and correlation

matrices, and other basic statistics are also available. Below, we calculate the means

of each row, as well as the covariance matrix:

>>> df.mean(axis=1)

a -0.626017

b -0.181223

c -0.029925

d 0.415291

dtype: float64

>>> df.cov()

I II

I 0.321144 -0.256229

II -0.256229 0.929456
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[2 rows x 2 columns]

Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is par-

ticularly well-suited to handling missing and anomalous data. As we have already

seen, the pandas default for a missing value is NaN. In basic arithmetic operations,

if one of the operands is NaN, then the output is also NaN. The following example

illustrates this concept:

>>> x = pd.Series(np.arange(5))

>>> y = pd.Series(np.random.randn(5))

>>> x.iloc[3] = np.nan

>>> x + y

0 0.731521

1 0.623651

2 2.396344

3 NaN

4 3.351182

dtype: float64

If we are not interested in the missing values, we can simply drop them from the

data altogether:

>>> (x + y).dropna()

0 0.731521

1 0.623651

2 2.396344

4 3.351182

dtype: float64

This is not always the desired behavior, however. It may well be the case that

missing data actually corresponds to some default value, such as zero. In this case,

we can replace all instances of NaN with a specified value:

>>> # fill missing data with 0, add

>>> x.fillna(0) + y

0 0.731521

1 0.623651

2 2.396344

3 1.829400

4 3.351182

dtype: float64

Other functions, such as sum() and mean() treat NaN as zero by default. When

dealing with missing data, make sure you are aware of the behavior of the pandas

functions you are using.

Problem 5. Using the dataset contained in the file crime_data.txt and the

techniques learned in this lab, use pandas to complete the following.
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• Load the data into a pandas DataFrame, using the column names in the

file and the column titled “Year” as the index. Make sure to skip lines

that don’t contain data.

• Insert a new column into the data frame that contains the crime rate

by year (the ratio of “Total” column to the “Population” column).

• Plot the crime rate as a function of the year.

• List the 5 years with the highest crime rate in descending order.

• Calculate the average number of total crimes as well as burglary crimes

between 1960 and 2012.

• Find the years for which the total number of crimes was below average,

but the number of burglaries was above average.

• Plot the number of murders as a function of the population.

• Select the Population, Violent, and Robbery columns for all years in the

1980s, and save this smaller data frame to a CSV file crime_subset.txt.


