
Lab 4

Complexity and Sparse
Matrices

Lab Objective: Introduce the temporal and spatial complexity and explore SciPy’s

methods for working with sparse matrices.

Complexity

Two major constraints on computing are time and available memory (or ‘space’).

The temporal complexity and spatial complexity of an algorithm measure how much

of these resources the algorithm requires. This lab intoduces complexity using

examples and intuition; for a rigorous introduction, see Volume 2 of the textbook.

Temporal Complexity

One of the most important questions in scientific computing is “How long will

a computer take to execute this algorithm?” For example, suppose an algorithm

operating on a 1-D array of length n requires f(n) calculations, where

f(n) =
3n3

2
+ 75n2 + 250n+ 30.

As n increases, the growth of f(n) is dominated by the n3 term. This gives

us information about how the runtime of our algorithm increases when we increase

input size. If we double the size of the input n, we would expect the algorithm to

need about 23 = 8 times as many steps, which would make it run about 8 times as

long.

The function f(n) above is called the temporal complexity of the algorithm. In

general, n is a positive integer that somehow describes the size of the inputs to your

algorithm. For example, perhaps your algorithm accepts n × n arrays, or perhaps

it accepts 1-D arrays of length n. The temporal complexity of your algorithm is a

function that accepts an input size n and returns the number of steps the algorithm

needs to execute on that input. As such, temporal complexity is a precise way to

describe how the execution time of your algorithm increases as the size of your input

increases.

41

42 Lab 4. Complexity and Sparse Matrices

20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1e7

f(n)
2n^3

Figure 4.1: When n is bigger than 160, f(n) is less than 2n3. This means that n3

is an asymptotic upper bound for f(n), so we say f(n) is O(n3).

Often, we do not care about the exact definition of f(n) so much as its behavior

when n gets large. This leads to the notion of an asymptotic upper bound. An

asymptotic upper bound is another function g(n) such that eventually, f(n) is less

than some constant multiple of g(n). In the above example, n3 is an asymptotic

upper bound for f(n) (see Figure 4.1). If g(n) is an asymptotic upper bound for

f(n), we say f(n) is O(g(n)). So in the example above, f(n) is O(n3) (spoken “Big

O of n cubed” or “order of n cubed”).

For example, adding two n×n matrices is O(n2). This is because it takes 1 step

to add each pair of elements in two n × n arrays, and there are n2 such pairs. By

comparison, calculating the inverse of a n×n matrix using Gaussian row reduction

is O(n3). (There are more efficient algorithms for matrix inversion.)

Spatial Complexity

Analogous to temporal complexity, the spatial complexity of an algorithm is a func-

tion that describes how the algorithm’s memory use increases as input sizes to the

algorithm increase. For example, if your algorithm needs to store an n× n matrix,

its memory use will increase at least as fast as n2. Spatial complexity is important

because the spatial complexity of an algorithm can affect its speed in several ways.

The most important way is that when the memory usage exceeds the amount of

available RAM, the machine must use the hard disk or some other slower storage

method.

43

This vocabulary allows us to discuss the question at the start of this section:

“How long will a computer take to execute this algorithm?”. The amount of time a

computer takes to execute an algorithm depends on both the algorithm’s temporal

complexity and on its spatial complexity.

Timing functions

We can empirically investigate a function’s temporal and spatial complexity by

timing how long it takes to run. In IPython1, you can time a line of code by

prefacing it with the command %timeit. As an example, we time how long it takes

to add the numbers from 1 to 1000.

>>> \%timeit sum(xrange(1000))

100000 loops, best of 3: 12.2 us per loop

This output means that the computer ran our line 100,000 times and averaged the

runtimes. The computer repeated this experiment 3 times, and the best average

was 12.2 microseconds .

Problem 1. In this problem you will analyze the complexity of the following

functions.

a. (Optional)

Single ``for'' loop

def func1(n):

n = 500*n

sum(xrange(n))

b.
Double ``for'' loop

def func2(n):

n = 3*n

t = 0

for i in xrange(n):

for j in xrange(i):

t += j

c.
Square a matrix

def func3(n):

n = int(1.2*n)

A = np.random.rand(n, n)

np.power(A, 2)

d.
Invert a matrix

from scipy import linalg as la

def func4(n):

1If you aren’t using IPython, you will need to use the timeit function documented here: https:

//docs.python.org/2/library/timeit.html.

https://docs.python.org/2/library/timeit.html
https://docs.python.org/2/library/timeit.html

44 Lab 4. Complexity and Sparse Matrices

A = np.random.rand(n, n)

la.inv(A)

e. (Optional)

Find the determinant of a matrix.

from scipy import linalg as la

def func5(n):

n = int(1.25*n)

A = np.random.rand(n, n)

la.det(A)

Do this as follows:

1. Time how long each function takes to run on an input of size n for

n = 100, 200, 400, and 800.

2. Graph your data as follows. Note that we rescaled the inputs to the

functions so that your lines would begin at roughly the same place on

the y-axis.

(a) For each function, plot a line using n = 100, 200, 400, and 800 for

x-values and your runtimes for y-values. Make sure your y-values

are all in the same units! When you call the function plt.plot

(), specify a value for the keyword parameter label so you can

reference each line later. For example, the call plt.plot(x, y,

label="Function 1") attaches the label ”Function 1” to this line.

(b) After plotting all your lines, call plt.legend() to draw a legend on

your graph. Use the keyword argument loc to specify the location

of the legend. Some possible values are 'upper left' and 'right'.

See the documentation for more options. Your final graph should

look something like the figure below.a

3. For each function, discuss how its spatial and temporal complexity

could have contributed to its runtime.

45

100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

Function 1
Function 2
Function 3
Function 4
Function 5

aFrom this graph, you can see that inverting a matrix is an incredibly time consuming
operation. In Lab 5 you will learn fast algorithms for solving linear systems without
inverting matrices. In fact, inverting matrices is so costly in terms of temporal and spatial
complexity that there is hardly ever a good reason to do it.

Sparse Matrices

A sparse matrix is a matrix that has relatively few nonzero elements. Sparse ma-

trices arise frequently in both theoretical and real-world applications. We can take

advantage of the sparse structure of these matrices to use less memory and do faster

computations.

For example, diagonal matrices are sparse. Storing an n× n diagonal matrix in

the naive way means storing n2 values in memory. For most applications, it makes

more sense to store the diagonal entries in a 1-dimensional array of n values. In

addition to using less storage space, this allows for much faster matrix operations.

Using the standard algorithm to multiply a matrix by a diagonal matrix involves

n3 steps, but most of these are multiplying by or adding zero. A smarter algorithm

that knows all off-diagonal entries are zero can accomplish the same task much

faster.

The sparse Module

The SciPy module sparse has storage methods to reduce the temporal and spatial

complexity of handling sparse matrices. When we are not using these special meth-

ods, we say we are storing the full matrix. We can also use sparse methods on dense

46 Lab 4. Complexity and Sparse Matrices

Sparse Matrix Type Description

bsr_matrix Compressed Block Sparse Row

coo_matrix Coordinate

csc_matrix Compressed Sparse Column

csr_matrix Compress Sparse Row

dia_matrix Sparse Diagonal

dok_matrix Dictionary of Keys

lil_matrix Linked List

Table 4.1: Sparse matrix representations in SciPy

matrices (matrices with mostly nonzero entries), but doing so will take longer than

using the usual methods for handling full matrices.

This difference in spatial complexity comes because a full array occupies a block

of memory for each entry, so a n × n array requires n2 blocks of memory. By

contrast, SciPy’s sparse methods store only the nonzero entries and their locations

in the array. As long as most entries are 0 (i.e., the matrix is sparse), this decreases

spatial complexity. You minimize spatial complexity when you store a sparse matrix

with the sparse module and a dense matrix as a full (or “regular”) matrix.

SciPy has seven sparse matrix types, listed in Table 4.1. Each type is optimized

either for storing sparse matrices whose nonzero entries follow certain patterns, or

for performing certain computations. For example, the csc_matrix and csr_matrix

types are optimized for arithmetic operations. We will introduce some other types

later in this lab. For more information, see the documentation (http://docs.

scipy.org/doc/scipy/reference/sparse.html).

Let us compare a sparse matrix computation with a full matrix computation.

Note that we can convert any full matrix to a sparse matrix of any of the types

listed in Table 4.1.

import numpy as np

from scipy import sparse

Create a dense matrix (stored as a full matrix).

>>> A_full = np.random.rand(600, 600)

Store A_full as a ``sparse'' matrix (even though it is dense).

>>> A_sparse = sparse.csc_matrix(A_full)

Create a sparse matrix (stored as a full matrix).

>>> B_full = np.diag(np.random.rand(600))

Store B_full as a sparse matrix.

>>> B_sparse = sparse.csc_matrix(B_full)

>>> def square(A):

... return np.power(A, 2)

>>> %timeit square(A_full)

100 loops, best of 3: 9.53 ms per loop

>>> %timeit square(A_sparse)

1 loops, best of 3: 941 ms per loop

http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

47

>>> %timeit square(B_full)

100 loops, best of 3: 5.36 ms per loop

>>> %timeit square(B_sparse)

1000 loops, best of 3: 259 us per loop

As you can see from this example, we get the best performance when we store

a sparse matrix with the sparse module and a dense matrix as a full (or “regular”)

matrix.

Creating Sparse Matrices

One way to create a sparse matrix is to create a full matrix and then convert it to

a sparse matrix, as we did in the previous example. However, you reduce spatial

complexity if you never create the full matrix. Here are two ways to create sparse

matrices directly.

The first way is to use the method sparse.spdiags(data, diags, m, n). If data is

a 1-D array and diags is a scalar, then this method creates an m × n matrix with

data on the specified diagonal. The parameter diags=0 indicates the main diagonal,

with lower diagonals indexed by negative numbers and upper diagonals by positive

numbers. If data is a 2-D array and diags is a list, then this method creates an

m × n matrix with the rows of data on the diagonals specified by diags. See the

documentation for more information.

Create a sparse 3x3 matrix with (2, 3, 4) on the diagonal.

>>> A = sparse.spdiags([2, 3, 4], 0, 3, 3)

>>> A

<3x3 sparse matrix of type '<type 'numpy.int64'>'
with 3 stored elements (1 diagonals) in DIAgonal format>

Convert A to a full matrix.

>>> A.todense()

matrix([[2, 0, 0],

[0, 3, 0],

[0, 0, 4]])

Create a sparse 4x4 matrix with the rows of diag_entries on the diagonals.

>>> diag_entries = np.array([[3,6,9,0],[1,4,7,10],[0,2,5,8]])

>>> B = sparse.spdiags(diag_entries, [-1, 0, 1], 4, 4)

<4x4 sparse matrix of type '<type 'numpy.int64'>'
with 10 stored elements (3 diagonals) in DIAgonal format>

>>> B.todense()

matrix([[1, 2, 0, 0],

[3, 4, 5, 0],

[0, 6, 7, 8],

[0, 0, 9, 10]])

The final matrix B in the example above is a special kind of matrix called a

banded matrix. A banded matrix is a sparse matrix whose only non-zero entries

are on the main diagonal and some diagonals on either side. In fact, B is an

example of a tri-diagonal matrix, because its nonzero entries are confined to the

three central diagonals. Banded matrices arise naturally in many applications,

including numerical methods for solving differential equations.

48 Lab 4. Complexity and Sparse Matrices

Problem 2. Write a function that takes an integer argument n and returns

a sparse n× n tri-diagonal array with 2’s along the diagonal and −1’s along

the two sub-diagonals above and below the diagonal. The array should be

in csr_matrix format. Hint : Read about the format keyword parameter of the

sparse.spdiags() method.

This matrix is the derivative operator in numerical analysis of differential

equations.

A second way to create a sparse matrix is to pre-allocate an array of zeros and

then specify the nonzero entries one at a time. The most efficient sparse matrix

types for building matrices incrementally are lil_matrix and dok_matrix. Once you

are done constructing the sparse matrix, you should convert it to a form that is

optimized for computations.

>>> Z = sparse.lil_matrix((400, 300)) # Initialize Z

Specify the nonzero entries of Z.

>>> Z[1,34] = 23

>>> Z[23,32] = 56

>>> Z[2,:] = 13.2

>>> Z

<400x300 sparse matrix of type '<type 'numpy.float64'>'
with 302 stored elements in LInked List format>

When the matrix Z is initialized, all its entries are assumed to be zero. Note

that at the end of Z’s construction, only 302 elements are being stored for a matrix

with 120000 entries.

You may have noticed that the only way to view a matrix as a 2-D array is

to convert it to a full matrix. If your matrix is too large to do this, you can still

visualize it using the plt.spy() command from matplotlib. This function plots the

locations of the non-zero entries in a matrix. The following code outputs Figure

4.2.

>>> from matplotlib import pyplot as plt

>>> B = np.random.rand(3, 10000)

>>> A = sparse.spdiags(B, range(-1, 2), 10000, 10000)

>>> plt.spy(A)

Manipulating sparse matrices

Scipy’s sparse matrices behave a little differently than NumPy arrays. You can

multiply two sparse matrices elementwise with the multiply() method of one of the

sparse matrices.

>>> C = sparse.spdiags(np.ones((3,3)), [-1,0,1], 3, 3)

>>> (A.multiply(C)).todense()

matrix([[2., 0., 0.],

[0., 3., 0.],

[0., 0., 4.]])

49

Figure 4.2: The output of the spy() command

On the other hand, the asterisk * performs ordinary matrix multiplication. You

can also use dot() method of one of the sparse matrices. However, you should NOT

use np.dot() on sparse matrices because it may return an incorrect answer.

One correct way to mutliply sparse matrices

>>> (A.dot(C)).todense()

matrix([[2., 2., 0.],

[3., 3., 3.],

[0., 4., 4.]])

Addition and scalar multiplication is implemented as usual.

>>> (A + 3*C).todense()

matrix([[5., 3., 0.],

[3., 6., 3.],

[0., 3., 7.]])

Using sparse matrices to reduce runtimes

In addition to spatial complexity, the sparse module can reduce temporal complexity.

Consider the linear system Ax = b, where A is a 100000×100000 tri-diagonal matrix.

Storing a full matrix of that size requires 10 billion double-precision floating-point

numbers. Since it takes 8 bytes to store a double, we need roughly 80GB to store

the full matrix. Lack of storage space makes this system impossible to solve for

most desktop computers, but even more problematic is the temporal complexity.

50 Lab 4. Complexity and Sparse Matrices

Methods for directly solving a linear system are usually O(n3). As a result, even if

the computer could store an 80GB matrix in RAM, it would still take several weeks

to solve the system.

The point is, even as computers increase in processing speed and memory, we

can still easily construct problems that they will struggle to solve in a reasonable

amount of time. However, if we store the tri-diagonal matrix as a sparse matrix, we

can solve the linear system, even with a modest computer.

Let’s first compute the spatial complexity of the above system when A is stored

as a sparse matrix. There are three diagonals that have roughly 100000 non-zero

entries. That’s 300000 double-precision floating point numbers, which is about 2.4

MB, or less storage than your favorite song. Thus, the sparse matrix will easily

fit into the computer’s RAM. Furthermore, the temporal complexity for solving a

tri-diagonal matrix is O(n). 2 Let’s see how long it takes to solve the system when

A and b are filled with random data.

>>> from scipy.sparse import linalg as sl

>>> D = np.random.rand(3, 100000)

>>> b = np.random.rand(1, 100000)

>>> A = sparse.spdiags(D,[-1,0,1],100000,100000, format='csr')
>>> def solSys():

... return sl.spsolve(A, b)

>>> %timeit solSys()

1 loops, best of 3: 80.8 ms per loop

This computer solved the system in only 80.8 milliseconds.

Problem 3. Write a function that accepts an integer argument n and does

the following:

1. Generates an n× 1 random array b.

2. Solves the linear system Ax = b, where A is the array in Problem 2 of

size n× n.

Problem 4. Write a function that accepts an integer argument n and re-

turns λn2, where λ is the smallest eigenvalue of the sparse tri-diagonal array

you built in Problem 2.

If A is your tri-diagonal matrix, calculate λ using the method scipy.sparse.

linalg.eigs with the command sl.eigs(A.asfptype(), which = 'SM'). The code

A.asfptype() ensures that your matrix has the right data type, and the pa-

rameter which = 'SM' tells the function to look for the smallest eigenvalues.

2Because there are fast algorithms for solving a tri-diagonal linear system, you may think that
there are fast algorithms for inverting a tri-diagonal matrix. In fact this is not true, and the inverse
of a sparse matrix is usually not sparse. There is rarely a good reason to invert a matrix, sparse
or no.

51

This command will return several of the smallest eigenvalues of A, and you

will have to select the smallest of these. Read the documentation of sl.eigs

for more information.

What value does λn2 approach as n approaches infinity? This value is

meaningful in operator theory. Hint: This value is the square of an important

number.

