
Lab 4

Intro to pandas II

In this lab, we explore in further detail two specific areas where pandas can be a

very useful tool: analyzing sequential data, and working with large datasets that

can’t be stored entirely in memory.

Warning

This lab assumes pandas 0.14.0. Errors may occur if you have an earlier

version. You can check the version of pandas you are running by the following:

>>> import pandas as pd

>>> pd.__version__

'0.14.0'

Time Series Analysis

A time series is a particular type of data set that consists of a sequence of mea-

surements or observations generated at successive points in time. Examples include

the yearly average temperate of a city, or the price of a given stock measured daily.

Working With Large Datasets

In the real world, a data scientist is often confronted with large datasets that can’t

be held in memory all at once. There are various solutions to this problem; in this

section, we will explore how pandas uses the HDF5 file format to allow us to work

with datasets on disk.

HDF5, which stands for “Hierarchical Data Format”, is a data storage system

especially suited for large numerical datasets. Rich and efficient software libraries

have been developed over the years to enable fast read and write operations, which

make HDF5 a competitive option for working with large datasets in many applica-

tions. The Python library pytables is one such library, and the HDF5 capabilities

in pandas are built directly on top of pytables.
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We have two primary learning goals: how to get our data into the proper HDF5

format, and how to intelligently work with the data once it’s tidied up. Let’s dive

in.

Writing HDF5 Data

The primary way we will interact with HDF5 data goes through the HDFStore object,

which behaves somewhat like a dictionary. To begin, let’s instantiate such an object,

and write data to it. Make sure to execute the code snippets throughout to ensure

that everything works as expected on your machine.

>>> # we will create an HDFStore with the filename test_store.h5

>>> my_store = pd.HDFStore('test_store.h5')
>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

Empty

The file 'test_store.h5' has just been created in your working directory, although it

contains nothing as yet. Write some pandas data to the store:

>>> # instantiate data, write to store

>>> ts = pd.Series(index=['A', 'B', 'C', 'D'], data = np.random.randn(4))

>>> df = pd.DataFrame(index=range(6), columns=['a','b'], data=np.random.random←↩
((6,2)))

>>> my_store['ts'] = ts

>>> my_store['df'] = df

>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])

/ts series (shape->[4])

Note the dict-like syntax for writing data to the store. We now see that the store

contains two objects, which can easily be retrieved in the following manner:

>>> # retrieve the df from the store, check it is the same

>>> store_df = my_store['df']
>>> (df == store_df).all()

a True

b True

dtype: bool

Removing an object that you have written to the store can be accomplished as

follows (although note that removing the object doesn’t necessarily free up space

on the hard disk, so the file size may not decrease):

>>> # let's remove the series ts

>>> del my_store['ts'] # or my_store.remove('ts')
>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])
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The read and write operations that we have explored so far work just fine for

small objects that can fit entirely in memory, but the story is different when it comes

to writing large datasets to an HDF5 file. Suppose we have a CSV file containing

the large dataset that we want to work with. One basic approach to storing this

data in HDF5 format is to read and write it by chunks, that is, move the data into

an HDF5 store a few lines at a time. This ensures that we never have to read too

much of the data into memory at once.

The read_csv function in pandas allows for reading a file by chunks of rows. We

simply need to specify the keyword argument chunksize, which gives the number of

rows of the file to read in each time. Most other pandas data readers have a similar

option for loading data by chunks. It is also important to specify the correct data

types of each column when reading in the chunks of data. This will ensure that a

consistent data type is used when writing to the HDF5 store. To do this, create

a dict that maps each column name to its correct data type. Columns containing

strings should have the object datatype, and columns containing numerical data

may be ints or floats. Any column that contains date data should NOT be included

in the dictionary, but rather should be passed as the parse_dates keyword argument

(a list of the column names containing dates).

To iteratively write data to a single object in an HDF5 store, we must use the

append method. This will store the data in a particular format called a table, an

on-disk data structure geared toward efficient querying of the rows. There are a few

parameters that we must tune in order to write the data successfully.

• key: This is the target object in the HDF5 store to which we want to write.

• value: This is the actual chunk of data (such as a DataFrame) that we want to

append to the store.

• data_columns: A list of the column names of the incoming data that should

be indexed. You should include all columns that you will use in subsequent

queries of the data. For example, if my dataset has a column labeled ‘A’,

and I anticipate wanting to select all rows where the value in column ‘A’ is

greater than, say, 0, then it is imperative that data_columns includes ‘A’. Try

to avoid including columns that aren’t needed in the queries, as performance

can decrease with a larger number of indexed columns. This argument only

needs to be specified for the first chunk to be written.

• min_itemsize: This is an int that specifies the maximum length of a string

found in the dataset. If you are unsure of the exact length of the longest

string, try setting this to a high default value (say 100). If you attempt to

write data containing a string whose length exceeds min_itemsize, an error is

raised. This argument is also only required for the first chunk.

• index: This argument is a boolean flag that indicates whether the data should

be indexed as it is written. By setting index=False, the data is written much

faster.

In the code below, we create a CSV file containing toy data, then write it by chunks

to our HDF5 store.
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>>> # first create the toy CSV file

>>> n_rows = 10000

>>> n_cols = 3

>>> csv_path = 'toy_data.csv'
>>> csv_file = open(csv_path, 'w')
>>> csv_file.write("A B C\n")

>>> for i in xrange(n_rows):

>>> for num in np.random.randn(3):

>>> csv_file.write(' ' + str(num))

>>> csv_file.write('\n')
>>> csv_file.close()

>>> # now iteratively write the data to the store

>>> n_chunk = 1000

>>> col_types = {'A':np.float, 'B':np.float, 'C':np.float}
>>> reader = pd.read_csv(csv_path, sep=' ', dtype=col_types, index_col=False, ←↩

chunksize=n_chunk, skipinitialspace=True)

>>> first = True # a flag for the very first chunk

>>> data_cols=['B', 'C'] # queries involving cols B and C will be allowed

>>> for chunk in reader:

>>> if first:

>>> my_store.append('toy_data', chunk, data_columns=data_cols, index=←↩
False)

>>> first = False

>>> else:

>>> my_store.append('toy_data', chunk, index=False)

>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])

/toy_data frame_table (typ->appendable,nrows->10000,ncols->3,indexers←↩
->[index],dc->[B,C])

If an error of any type occurs when writing your data, and you need to start over, it

is necessary to remove the previously written data, since the append function doesn’t

overwrite existing data.

Now that the data is in the HDF5 store, we should index the table, which can

speed up query operations. This is done as follows:

>>> my_store.create_table_index('toy_data', optlevel=9, kind='full')

Obviously the toy data in this example is small enough to fit in memory, but it

illustrates a basic approach to moving large datasets into a HDF5 store.

Problem 1. Write the data contained in the file campaign.csv to an HDF5

store using the chunking approach. We recommend setting the chunksize

argument to 50,000. There will be just over 100 chunks for this chunk size,

so you can track your progress by printing out a counter, if you wish. The

whole writing process will likely take a few minutes.

The file campaign_format.txt contains information about the dataset, in-

cluding the column names and descriptions. Consult this file and note which,

if any, columns contain date information. Use this information to appropri-
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ately set the parse_dates argument in the read_csv function. This argument

should be a list of the column names that include date information. Note

also that some of the columns contain strings, so remember the min_itemsize

argument. Finally, you will be analyzing this data in the remainder of the

lab, so glance over the problems below to determine which columns need to

be indexed.

Once you have finished writing to the store, create a table index for the

data, just as shown in the example above.

Working With On-Disk Arrays

Now that we have the data in a HDF5 table, how do we work with it? The key here

is to only read in subsets of the data, since trying to read the entire dataset at once

may result in swamping the memory and crashing the system. The select method

allows us to do just this. It takes two basic arguments: first, the name of the table

in the store that we want to query, and second, a query statement. Remember, the

query statement may not reference columns that weren’t included in data_columns.

>>> # this query is OK

>>> my_store.select('toy_data', where = ["'B' < 0", "'C' > 0"])

>>> # this query is NOT OK

>>> my_store.select('toy_data', where = ["'A' < .5"])

Note that each logical statement in the where list is combined with a logical AND.

Let’s look at some simple examples with our campaign dataset. We assume that

the data is in a HDF5 store called store. Follow along to make sure you get the

same results.

>>> # get a list of the candidates; result should be 14 candidates

>>> cands = store.select_column('campaign', 'cand_nm').unique()

>>> # find number of contributions from UT

>>> n_UT = len(store.select('campaign',where = ["'contbr_st' == 'UT'", "columns='←↩
contbr_st'"]))

>>> n_UT

50462

>>> # find number of UT contributions to Romney

>>> n_rom_UT = len(store.select('campaign', where = ["'contbr_st' == 'UT'", "'←↩
cand_nm'=='Romney, Mitt'", "columns='contbr_st'"]))

>>> n_rom_UT

26962

>>> # proportion of UT contributions that went to Romney

>>> np.float(n_rom_UT)/n_UT

0.534303039911
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Problem 2. How many contributors in California gave to Obama? To Rom-

ney?

It is also possible to execute more complicated queries involving grouping oper-

ations, although some care is required. Consider the following question: how many

contributions came from each state, and what is the average contribution from each

state? To answer this question, we need to aggregate information grouped by each

state. If we could hold the data in memory, we could use a simply groupby operation,

but since our data resides on disk, the solution is a bit more involved. Fortunately,

the 'contbr_st' column alone is small enough to load into memory, so we do that.

We can then utilize the Series method value_counts, which counts the number of

occurrences of each distinct value in the column. In this way, we obtain a Series

indexed by the states, and containing the number of contributions from each state.

>>> # load in the state column, then calculate the counts

>>> states = store.select_column('campaign','contbr_st')
>>> states = states.value_counts()

Next, we want to iterate through each state, and calculate the mean contribution.

>>> st_contb = []

>>> for state in states.index:

>>> grp = store.select('campaign', where=["'contbr_st'=\"{}\"".format(state),←↩
"columns='contb_receipt_amt'"])

>>> st_contb.append(grp['contb_receipt_amt'].mean())

To tidy up our results, we create a DataFrame indexed by the state, containing the

number of contributions and average contribution. Then we plot top results.

>>> state_info = pd.DataFrame({'Count':states, 'Avg Contb':st_contb})
>>> state_info.sort(columns='Count', ascending=False, inplace=True)

>>> plt.subplot(211)

>>> state_info['Count'][:10].plot(kind='bar')
>>> plt.subplot(212)

>>> state_info['Avg Contb'][:10].plot(kind='bar')
>>> plt.show()

Results are shown in Figure 4.1

Problem 3. Calculate the total net contributions to each candidate, and

plot the results in a bar graph. Your result should match Figure 4.2.

Problem 4. Calculate the frequency of the 20 most common occupations of

contributors in the dataset. Also calculate the average positive contribution
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Figure 4.1: Top 10 contributing states (top), and their average contributions (bot-

tom).
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Figure 4.2: Total net contributions to each candidate.
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Figure 4.3: Top 20 occupations of contributors (above) and average contribution of

each occupation (below).

amount for each of these 20 occupations. Plot the results in two bar graphs.

You results should match Figure 4.3.

What if you are interested in the contributions to a candidate as a function of

time? Let’s first aim to create a DataFrame containing the contribution amount and

date for all contributions going to Ron Paul.

>>> cand = 'Paul, Ron'
>>> cand_contb = store.select('campaign', where=["'cand_nm'==\"{}\"".format(cand)←↩

])[['contb_receipt_amt', 'contb_receipt_dt']]

Next, we need to group by date, and apply the sum function to add up contributions

for each particular date. This can be done with the groupby function as follows:

>>> contb = cand_contb.groupby(by='contb_receipt_dt').sum()

Plotting this time series yields Figure 4.4.
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Figure 4.4: Campaign Contributions to Ron Paul over time.

Problem 5. Plot the running total of campaign contributions as a function

of time for Mitt Romney, Barack Obama, and Newt Gingrich (all on the

same graph). Your results should match Figure 4.5.

Each data project brings with it a new set of problems and pitfalls, but a careful

application of the principles in this lab will provide a good starting point for working

with large datasets in pandas.
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Figure 4.5: Running contribution totals for three candidates.


