
Lab 6

Applications

Data Visualization Lab Objective: Use data visualizations to explore data and

communicate it to others.

What is data visualization?

Data visualizations (or graphs) are used to understand and explore data as well

as communicate results to others. Just as a picture is worth a thousand words, a

graph is much easier than a thousand data points for the human mind to interpret.

Though anyone working with data benefits from graphing it, data visualization is

also an independent field that studies the interplay between mathematics, statistics,

and the visual arts.

Types of visualizations

There are many standard ways to visualize data, and some consistently reveal and

communicate the most information about certain kinds of data sets. Here are some

standard plots and some examples of data they are commonly used to visualize.

1. A scatter plot graphs (x, y) tuples as points. A scatter plot can reveal corre-

lation (or lack thereof) between x and y. Use a scatter plot when your data

is not ordered. You can create a scatter plot in matplotlib with the command

plt.scatter().

2. A line plot graphs (x, y) tuples as points and then connects them with a line.

You should use a line plot when there is a natural order to your tuples. For

example, use a line plot to look for trends over time. Recall that you can

create a line plot in matplotlib with the command plt.plot().

3. A histogram (or bar graph) depicts (x, y) tuples as rectangles whose length

is determined by y (see Figure 6.1). Like line plots, histograms can be used

to look for trends over time. Another use of a histograms is to investigate

statistical distributions. You can create a histogram in matplotlib with the

command plt.hist().

69

70 Lab 6. Data Visualization

4. A pie chart depicts parts of a whole as slices of a circle. Often, a pie chart is

best replaced with a histogram. This is because it is difficult for us to see how

similar slices of a pie chart differ in size. By contrast, we can easily detect

even small differences in the lengths of rectangles in a bar chart. However, pie

charts are ideal for some purposes, especially when the exact numbers from

the data are not important. See [Gab13] for some situations where data is

best represented by a pie chart. You can create a pie chart in matplotlib with

the command plt.pie().

5. A sparkline is a word-sized graphic that is often embedded inline with the

text. Created by Edward Tufte, an innovator and recognized leader in the

field of data visualizations, sparklines can be used to quickly communicate

large-scale trends in a data set. They are also ideal for binary data sets. Two

sources for creating sparkplots in Python are [Sof09] and [Gre05].

6. A pseudocolor plot or heat map uses color to display a third dimension on a

two-dimensional page (see Figure 6.4). One common use is to illustrate the

temperature of an object. You can create a pseudocolor plot in matplotlib

with the plt.pcolormesh() command.

7. Small multiples are several minature graphics of the same type in a single

visualization. Like sparklines, they were pioneered by Edward Tufte. Any

of the plots discussed so far may be assembled into a small multiple. Small

multiples are useful for viewing trends over time, when the data associated to

each time is more complex than a single number. More generally, they can

be used to compare many sets of similar data ([tufte1990] p. 67). Figure

6.2 could be called a small multiple, though frequently they contain more

subplots. Recall that this kind of plot can be created in matplotlib with the

command plt.subplot().

Exploring data with visualizations

When you visualize data you may notice trends that are not apparent from the

numbers. The following problem is an example of this.

Problem 1. The data sets I-IV in Table 6.1 are known as Anscombe’s quar-

tet. Each dat set has identical statistical properties. In each case,

• The mean of x is 9 and the mean of y is 7.5.

• The variance of x is 11 and the variance of y is 4.127.

• The correlation between x and y is .816.

• The linear regression line is y = 3 + 5x.

Plot each data set. What do you notice?

71

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Table 6.1: These four sets of data are known as Anscombe’s quartet.

As Problem 1 demonstrates, a picture can reveal a data set in ways numbers

can’t. Learning from a visualization of a data set is often a recursive process. You

must visualize the data, make observations, and then zoom, filter, or otherwise

modify your visualization to further explore the data.

One issue to consider is the range. By choosing to plot only a portion of your

data, you may be able to focus your attention on the most relevant data. On the

other hand, you may also miss some interesting behavior in the data you didn’t

graph.

Another issue to consider is scale. For example, suppose the number of dogs

kept as pets in a certain city increases from 50,000 to 55,000 over 4 years. This

increase can appear small or large, depending on where we start the y-axis and how

long we stretch out the x-axis (see Figure 6.5).

There are many software packages that facilitate the visual exploration of data.

One Python library is Glue (see [BRB14]).

Log plots

One good way to analyze data is to plot it on a different scale. Log plots in particular

can reveal important structure in a data set. You can create a log-log plot by taking

the logarithm of both the x- and y-values. Analogously, you can create a log-lin

plot (also called a log plot) by taking the logarithm of only the y-values of your

data set, or a lin-log plot by taking the logarithm of only the x-values.

As an example, let us look at the cost of health care claims. Our data set is

bogus but created to closely resemble real-life data. An initial plotting of the data

produces the histogram on the left in Figure 6.1. From this picture, it is hard to see

the nature of the data—the plot just looks like a single bar. We may think that all

health care claims are cheap. However, when we take the logarithm of the claims

prices, we get the histogram on the right in Figure 6.1. Graphed on this scale, the

data has a bell-shaped distribution similar to a normal distribution. Moreover, we

see that there are some very expensive claims being submitted, though they are

few.

72 Lab 6. Data Visualization

Figure 6.1: The same data (meant to resemble the prices of health care claims) is

plotted in both histograms above. The plot at left is a lin-lin scale, whereas the

plot at right is a log-lin scale. In this case, changing scales revealed important

information about the data.

As a general rule, log-lin plots are useful when the range of the y-values is orders

of magnitude larger than the range of the x-values. Our health care data was an

example of this. Similarly, lin-log plots are useful when the range of the x-values is

much bigger than the range of the y-values. In any case, you can try applying a log

scale to one or both of your axes as a way to explore your data.

Let us analyze the mathematics behind log plots. Suppose we have some data

that roughly follows the line y = cxa where c and a are constants. Taking the

logarithm of both sides yields

log(y) = a log(x) + log(c).

If we set new variables X = log(x) and Y = log(y), then this equation becomes

Y = aX + log(c), which is the equation of a straight line. So on a log-log plot,

polynomial-shaped data looks linear. Similarly, taking the log of y = ax yields

log(y) = log(a)x,

so exponential data looks linear on a log-lin plot. Finally, data of the form y =

a log(x) + b will look linear on a lin-log plot. See Figure 6.2.

Be warned that many different functions can look linear on log plots. Thus, if

you graph your data on a log-log plot and you see a line, you CANNOT conclude

that your data must follow a polynomial. In general, you need more information.

In matplotlib, you can create plots on a logarithmic scale directly by using the

plt.loglog(), plt.semilogy(), and plt.semilogx() commands. Their syntax is identical

to that ofplt.plot(). Alternatively, you can modify the scale of an existing plot

using plt.yscale() or plt.xscale().

Problem 2. Graph your data from Problem 1 in Lab 4 (Matrices and Com-

73

Figure 6.2: Here are some functions plotted on various logarithmic and linear scales.

The dark blue line is y = x, the green line is y = log(x), the red line is y = ex,

and the light blue line is y = x3. We have used different ranges on the y-axes to

highlight appropriate parts of the graphs.

plexity) on a (a) log-log scale, (b) log-lin scale, and (c) lin-log scale. In your

opinion, which plot makes the data easiest to understand?

Communicating data with visualizations

As the saying has it, “a picture is worth a thousand words.” Certainly, a data

visualization is far more valuable than a thousand data points to a colleague who

wants to understand the results of your analysis. Data visualizations are critical for

communication in both business and research.

Choosing the right visualization

At this point, you have already used visualization to explore your data and draw

conclusions, and you are ready to tell your results to someone else. The first step

in creating a graphic to do this is to choose the right type of visualization. As we

saw in the section “Types of Visualizations,” there are many possibilities, each with

74 Lab 6. Data Visualization

different strengths. You should carefully consider which one best suits your data

set and communication needs.

Simplify

Once you have chosen the visualization best suited to your data, you should design

the details so that all elements contribute to the communication of data. Edward

Tufte offers two principles for simplifying graphics: (1) erase ink that does not

communicate data, and (2) erase ink that communicates data redundantly. Both of

these principles should be applied within reason ([tufte2001] pp.96-100).

According to these principles, decorative backgrounds, fancy lettering, and cute

graphics in the corner of you plots should all be deleted.

Other opportunities for simplification are harder to notice and implement. As

an example, let us examine the plot on the right of Figure 6.1. This plot was created

with the following code.

import numpy as np

import scipy as sp

from matplotlib import pyplot as plt

m = 2.07

s = 0.63

num_samples = 10000

samples = []

for i in xrange(num_samples):

samples.append(sp.random.lognormal(m, s))

sp_samples = sp.array(samples)

Plot the histogram

plt.hist(sp_samples, 100)

For purposes of this example, the only important part of the above code is the

line plt.hist(sp_samples, 100) that plots the histogram. What ink in this plot can

we erase because it communicates no data?

First, let’s get rid of the vertical black lines that separate the bars of the his-

tograph. These are meaningless for our application. We can do this by modifying

our call to plt.hist() as follows.

plt.hist(sp_samples, 100, histtype="stepfilled")

Next, let us turn off the top and right lines that box in the graph. To do this,

we need to access the “axis” object associated with the figure. We can access the

“axis” object with the command plt.gca() (get current axis).

Get current axis instance

axis = plt.gca()

Hide top and right spines

axis.spines['right'].set_visible(False)
axis.spines['top'].set_visible(False)

75

Figure 6.3: A simplified version of the histogram in Figure 6.1.

These commands only turn off the sides of the box, not the tick marks. To turn

off the tick marks we run the following commands.

Only show bottom and left tick marks

axis.yaxis.set_ticks_position('left')
axis.xaxis.set_ticks_position('bottom')

Finally, we do not need so many tick marks on the x- and y-axes. We adjust

those along with specifying the range on each axis.

Fix x and y ranges

plt.xlim(0,70)

plt.ylim(0, 800)

Use fewer axis ticks

plt.xticks(np.arange(0, 71, 35))

plt.yticks(np.arange(0, 801, 200))

The final graph is shown in Figure 6.3. Note how much cleaner this looks than

the original.

Color

Color should be added to your graphic thoughtfully. The default settings in mat-

plotlib should generally not be used. Several bright colors in a single plot often jar

76 Lab 6. Data Visualization

Figure 6.4: Both of these pseudocolor plots depict the function z = sin(x)sin(y) on

the domain [−1, 4]× [−4, 1]. The plot at left uses a rainbow gradient which has no

relationship to the data. The plot at right uses a greyscale, which has two benefits:

the colors are not irritating, and “black” is associated with “low.”

the viewer, so you should limit the number and intensity of colors and use them

only to emphasize parts of your data. If a grayscale plot contains just as much

information as a colored plot, consider using grayscale.

The default color settings for pseudocolor plots in matplotlib are particularly

problematic. The default color gradient is a rainbow, which usually has no relation

to the data. Most viewers have trouble remembering which colors are “high” and

which are “low”. Instead, you should set the gradient to cover one or two colors,

and when possible these colors should be related to the data you are communicat-

ing. You can change the color gradient used by plt.pcolormesh() with the keyword

argument cmap (short for “colormap”). A list of predefined colormaps is available at

http://matplotlib.org/examples/color/colormaps_reference.html, but you

can also define your own. See Figure 6.4 for an example of a good and bad pseudo-

color plot.

Problem 3. Choose a graph you previously created that you think could

use simplification. Apply at least 3 of the following to simplify your plot:

1. Turn off some of the spines.

2. Fix the x or y range to better fit your data.

3. Change the number of x or y ticks.

4. Choose a better color scheme.

Simplify your image in any other ways you can think of.

http://matplotlib.org/examples/color/colormaps_reference.html

77

Figure 6.5: The graph of some data can look very different depending on the scale.

Here are two graphs of the “same” line over the same range (1 to 4). The only

difference is the y-range. Notice easy it is to manipulate the y-scale to imply either

a large or small increase in y. These figures are especially misleading when we leave

the range markers off of the y-axes.

Tell the truth

Just as graphics can tell your reader about your data, they can also give your

viewer false impressions. You should never use data visualization to mislead your

reader. There are many ways pictures can be used to lie, and some of them can be

unintentional.

For example, if we see differences in shapes by area, not width or height. Suppose

you are creating a pictogram to demonstrate the recent increase in housing prices,

which have doubled in the last n years. So, you draw two houses, one that is 1”

wide and one that is 2” wide. To a reader, it will appear that housing prices have

increased by a factor of 22 = 4. Hence, you should make pictures proportional in

area to the numbers they represent.

Scale is also important when you are drawing a line graph or a histogram.

Differences between data points can appear small if you zoom out, or large if you

zoom in (see Figure 6.5). Also, changing the scale partway along the x- or y-axis

can distort data.

Three-dimensional special effects also tend to be misleading. A 3-D pie chart,

for example, can be used to distort the sizes of its slices. Similarly, a 3-D histogram

can use perspective to distort the relative differences between bars.

As in any form of communication, integrity is important in data visualization.

You will win more respect for yourself and those you represent if you avoid mislead-

ing diagrams.

