
Lab 7

QR Decomposition

Lab Objective: Use the Gram-Schmidt algorithm and orthonormal transforma-

tions to perform the QR decomposition.

The QR decomposition of a matrix A is a factorization A = QR, where Q has

orthonormal columns and R is upper triangular. This decomposition is useful for

computing least squares and finding eigenvalues. As stated in the following theorem,

the QR decomposition of A always exists when the rank of A equals the number of

columns of A.

Theorem 7.1. Let A be an m× n matrix of rank n. Then A can be factored into

a product QR, where Q is an m×m matrix with orthonormal columns and R is a

m× n upper triangular matrix of rank n.

In this lab we will only discuss real matrices. All of these results can be extended

to the complex numbers by replacing “orthogonal matrix” with “unitary matrix,”

“transpose” with “hermitian conjugate,” and “symmetric matrix” with “hermitian

matrix.”

Modified Gram-Schmidt

Let A be an m×n matrix of rank n. There are many methods for computing the QR

decomposition. First we will discuss the algorithm that computes Q by applying

Gram-Schmidt to the columns of A.

Let {xi}ni=1 be the columns of A (the rank hypothesis implies that these are

linearly independent vectors). Then the Gram-Schmidt algorithm computes an

orthonormal basis {qi}ni=1 for the span of the xi. The Gram-Schmidt algorithm

defines

q1 =
x1

‖x1‖
.

It recursively defines qk for k > 1 by

qk =
xk − pk−1

‖xk − pk−1‖
, k = 2, . . . , n,

81

82 Lab 7. QR decomposition

where

pk−1 =

k−1∑
i=1

〈qi,xk〉qi, k = 2, . . . , n

and p0 = 0.

Let Q be the matrix with columns {qi}ni=1. Let R be the upper triangular

matrix with entries rjk where rkk = ‖xk − pk−1‖ and rjk = 〈qj ,xk〉 when j < k.

Then QR = A and R is nonsingular (see [ref:textbook] for a proof). Thus, if A is

square, the matrices Q and R are its QR decomposition.

When implemented with a computer, the Gram-Schmidt algorithm may produce

a matrix Q with columns that are not even close to orthonormal due to rounding

errors. We now introduce the modified Gram-Schmidt algorithm, which consistently

produces matrices Q whose columns are “very close” to orthonormal.

In the modified Gram-Schmidt algorithm, q1 is the normalization of x1 as before.

We then make each of the vectors x2, . . . ,xn orthogonal to q1 by defining

xk := xk − 〈q1,xk〉q1, k = 2, . . . , n.

(Compare this to the usual Gram-Schmidt algorithm, where we only made x2 or-

thogonal to q1.) Next we define q2 = x2

‖x2‖ . Once again we make x3, . . . ,xn orthog-

onal to q2 by defining

xk := xk − 〈q2,xk〉q2, k = 3, . . . , n.

(Each of these new vectors is a linear combination of vectors orthogonal to q1,

and hence is orthogonal to q1 as well.) We continue this process until we have

an orthonormal set q1, . . . ,qk. The entire modified Gram-Schmidt algorithm is

described in Algorithm 7.1.

Algorithm 7.1 The modified Gram-Schmidt. This algorithm returns orthogonal

Q and upper triangular R such that A = QR.

1: procedure Modified Gram-Schmidt(A)

2: m,n← shape (A)

3: Q← copy (A)

4: R← zeros((n, n))

5: for 0 ≤ i < n do

6: Ri,i ← ‖Q:,i‖
7: Q:,i ← Q:,i/Ri,i
8: for i+ 1 ≤ j < n do

9: Ri,j ← QT
:,jQ:,i

10: Q:,j ← Q:,j −Ri,jQ:,i

11: return Q,R

QR decomposition in SciPy

The linear algebra library in SciPy calculates the QR decomposition using a software

package called LAPACK (Linear Algebra PACKage), which is incredibly efficient.

Here is an example of using SciPy to compute the QR decomposition of a matrix.

83

>>> import numpy as np

>>> from scipy import linalg as la

>>> A = np.random.rand(4,3)

>>> Q, R = la.qr(A)

>>> Q.dot(R) == A

array([[True, False, False],

[True, False, False],

[True, True, False],

[True, True, False]], dtype=bool)

Note that Q.dot(R) does not equal A exactly because of rounding errors. However, we

can check that the entries of Q.dot(R) are “close” to the entries of A with the NumPy

method np.allclose(). This method checks that the elements of two arrays differ by

less than a given tolerance, a tolerance specified by two keyword arguments rtol and

atol that default to 10−5 and 10−8 respectively. You can read the documentation

to learn how the tolerance is computed from these numbers.

>>> np.allclose(Q.dot(R), A)

True

We can use the same method to check that Q is “very close” to an orthogonal matrix.

>>> np.allclose(Q.T.dot(Q), np.eye(4))

True

Problem 1. Write a function that accepts as input a m×n matrix of rank n

and computes its QR decomposition, returning the matrices Q and R. Your

function should use Algorithm 7.1. Hint: Read about the function np.inner().

Another hint: Check that your function works by using np.allclose().

Problem 2. Write a function that accepts a square matrix A of full rank and

returns |det(A)|. Use the QR decomposition of A to perform this calculation.

Hint: What is the determinant of an orthonormal matrix?

Householder triangularization

Another way to compute the QR decomposition of a matrix is with a series of or-

thonormal transformations. Like the Modified Gram-Schmidt algorithm, orthonor-

mal transformations are numerically stable, meaning that they are less susceptible

to rounding errors.

84 Lab 7. QR decomposition

v

x

Hvx

H

Figure 7.1: This is a picture of a Householder transformation. The normal vector

v defines the hyperplane H. The Householder transformation Hv of x is just the

reflection of x across H.

Householder transformations

The hyperplane in Rn with normal vector v is the set {x ∈ Rn | 〈x,v〉 = 0}.
Equivalently, the hyperplane defined by v is just the orthogonal complement v⊥.

See Figure 7.1.

A Householder transformation of Rn is a linear transformation that reflects

about a hyperplane. If a hyperplane H has normal vector v, let u = v/‖v‖. Then

the Householder transformation that reflects about H corresponds to the matrix

Hu = I − 2uuT . You can check that (I − 2uuT)T (I − 2uuT) = I, so Householder

transformations are orthogonal.

Householder triangularization

The QR decomposition of an m×n matrix A can also be computed with Householder

transformations via the Householder triangularization. Whereas Gram-Schmidt

makes A orthonormal using a series of transformations stored in an upper triangular

matrix, Householder triangularization makes A triangular by a series of orthonormal

transformations. More precisely, the Householder triangularization finds an m×m
orthogonal matrix Q and and m×n upper triangular matrix R such that QA = R.

Since Q is orthogonal, Q−1 = QT so A = QTR, and we have discovered the QR

decomposition.

Let’s demonstrate the idea behind Householder triangularization on a 4 × 3

matrix A. Let e1, . . . , e4 be the standard basis of R4. First we find an orthonormal

transformation Q1 that maps the first column of A into the span of e1. This is

diagrammed below, where ∗ represents an arbitrary entry.

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q1−→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

Let A2 = Q1A be the matrix on the right above. Now find an orthonormal trans-

formation Q2 that fixes e1 and maps the second column of A2 into the span of e1

85

and e2. Notice that since Q2 fixes e1, the top row of A2 will be fixed by Q2, and

only entries in the boxed submatrix will change.

Let A3 = Q2Q1A be the matrix on the right above. Finally, find an orthonormal

transformation Q3 that fixes e1 and e2 and maps the third column of A3 into the

span of e1, e2, and e3. The diagram below summarizes this process, where boxed

entries indicate those affected by the operation just performed.

Q3Q2Q1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = Q3Q2

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 = Q3

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

 =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0

 .

We’ve accomplished our goal, which was to triangularize A using orthonormal

transformations. But how do we construct the matrices Qk?

It turns out that we can choose each Qk to be a Householder transforma-

tion. Suppose we have found Householder transformations Q1, . . . , Qk−1 such that

Qk−1 . . . Q2Q1 = Ak where

Ak =

(
T X ′

0 X ′′

)
.

Here, T is a (k − 1) × (k − 1) upper triangular matrix. Let x be the kth column

of Ak. Write x = x′ + x′′ where x′ is in the span of e1, . . . , ek−1. So x′′ looks like

k − 1 zeros followed by the first column of X ′′. The idea is to reflect x′′ about a

hyperplane into the span of ek. It turns out that there are two choices that will

work (see Figure 7.2). These hyperplanes have normal vectors x′′ + ‖x′′‖ek and

x′′−‖x′′‖ek. In fact, the more numerically stable transformation is to reflect about

the hyperplane with normal vector vk = x′′ + sign(xk)‖x′′‖ek, where xk is the kth

entry of x′′ (or the top left entry of X ′′). (You can check that vk is orthonormal

to e1, . . . , ek−1, so the plane orthonormal to vk contains e1, . . . , ek−1, and reflecting

about it fixes e1, . . . , ek−1.) Thus, Qk is the Householder transformation Hvk .

The final question is to find an efficient algorithm for computingQ = QnQn−1 . . . Q1

and R = QnQn−1 . . . Q1A. The idea is to start with R = A and Q = I. Then we

compute Q1 and modify R to be Q1A and Q to be Q1. Next we compute Q2 and

modify R to be Q2Q1A and Q to be Q2Q1, and so forth. As we have already dis-

cussed, Qk fixes the first k − 1 rows and columns of any matrix it acts on. In fact,

if x′′ = (0, . . . , 0, xk, xk+1, . . . , xn) as above, then vk = (0, . . . , 0, vk0 , xk+1, . . . , xn)

where vk0 = xk + sign(xk)‖x′′‖. If uk is the normalization of (vk0 , xk+1, . . . , xn) ∈
Rn−(k−1), then

Qk = I − 2x′′(x′′)T

‖x′′‖2
=

(
I 0

0 I − 2uku
T
k

)
.

This means that, using block multiplication,

QkAk =

(
I 0

0 I − 2uku
T
k

)(
T X ′

0 X ′′

)
=

(
T X ′

0 (I − 2uku
T
k)X ′′

)
.

So at each stage of the algorithm, we only need to update the entries in the bottom

right submatrix of Ak, and these change via matrix multiplication by I − 2uku
T
k .

86 Lab 7. QR decomposition

Hv1
x

xv1

v2

Hv2x

Figure 7.2: If we want to reflect x about a hyperplane into the span of e1, there are

two hyperplanes that will work. The two choices are defined by the normal vectors

v1 and v2. Reflecting about the hyperplane defined by vi produces Hvix.

Similarly,

QkQk−1 . . . Q1 = Qk

(
A

B

)
=

(
I 0

0 I − 2uku
T
k

)(
A

B

)
=

(
A

(I − 2uku
T
k)B

)
,

so to update
∏
Qi, we need only modify the bottom rows. These also change via

matrix multiplication by I − 2uku
T
k .

These arguments produce Algorithm 7.2.

Algorithm 7.2 Householder triangularization. This algorithm returns orthonormal

Q and upper triangular R satisfying A = QR.

1: procedure Householder(A)

2: m,n← shape (A)

3: R← copy (A)

4: Q← Im
5: for 0 ≤ k < n− 1 do

6: uk ← copy (Rk:,k)

7: uk0 ← uk0 + sign (uk0) ‖uk‖
8: uk ← uk/ ‖uk‖
9: Rk:,k: ← Rk:,k: − 2uk

(
uTkRk:,k:

)
10: Qk: ← Qk: − 2uk

(
uTkQk:

)
11: return QH, R

Problem 3. Write a function that accepts as input a m×n matrix of rank n

and computes its QR decomposition, returning the matrices Q and R. Your

function should use Algorithm 7.2. Hint: Read about the function np.outer().

87

Upper Hessenberg form

An upper Hessenberg matrix is a square matrix with zeros below the first subdiag-

onal. Every n × n matrix A can be written A = QTHQ where Q is orthonormal

and H is an upper Hessenberg matrix, called the Hessenberg form of A.

A fast algorithm for computing the QR decomposition of a Hessenberg matrix

will be taught in Lab 8. This algorithm in turn leads to a fast algorithm for finding

eigenvalues of a matrix, which will be discussed in Lab 10.

For now, we will outline an algorithm for computing the upper Hessenberg form

of any matrix. Like Householder triangularization, this algorithm uses Householder

transformations. To find orthogonal Q and upper Hessenberg H such that A =

QTHQ, it suffices to find such matrices that satisfy QTAQ = H. Thus, our strategy

is to multiply A on the right and left by a series of orthonormal matrices until it is

in Hessenberg form. If we use the same Q1 as in the first step of the Householder

algorithm, then with Q1A we introduce zeros in the first column of A. However,

since we now have to multiply Q1A on the left by QT1 , all those zeros are destroyed.

Instead, let’s try choosing a Q1 that fixes e1 and reflects the first column of A

into the span of e1 and e2. Because Q1 fixes e1, the product Q1A leaves the first

row of A alone, and (Q1A)QT1 leaves the first column of (Q1A) alone. If A is a 5×5

matrix, this looks like
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1·−→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 ·QT1−−→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

A Q1A (Q1A)QT1

We now iterate through the matrix until we obtain

Q3Q2Q1AQ
T
1 Q

T
2 Q

T
3 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

The pseudocode for computing the Hessenberg form of a matrix with House-

holder transformations is shown in Algorithm 7.3. Although the Hessenberg form

exists for any square matrix, this algorithm only works for full-rank square matrices.

Notice that this algorithm is very similar to Algorithm 7.2.

When A is symmetric, its upper Hessenberg form is a tridiagonal matrix. This

is because the Qi’s zero out everything below the first subdiagonal of A and the

QTi ’s zero out everything above the first superdiagonal. Thus, the Hessenberg form

of a symmetric matrix is especially useful, since as we saw in Lab 4, tridiagonal

matrices make computations fast.

88 Lab 7. QR decomposition

Algorithm 7.3 Reduction to Hessenberg form for a nonsingular matrix. This

algorithm returns orthogonal Q and upper Hessenberg H such that A = QTHQ.

1: procedure Hessenberg(A)

2: m,n← shape(A)

3: H ← copy(A)

4: Q← Im
5: for 0 ≤ k < n− 2 do

6: uk ← copy (Hk+1:,k)

7: uk0 ← uk0 + sign(uk0) ‖uk‖
8: uk ← uk/ ‖uk‖
9: Hk+1:,k: ← Hk+1:,k: − 2uk(uTkHk+1:,k:)

10: H:,k+1: ← H:,k+1: − 2(H:,k+1:uk)uTk
11: Qk+1: ← Qk+1: − 2uk(uTkQk+1:)

12: return Q,H

Problem 4. Write a function that accepts as input a nonsingular square

matrix A and computes its Hessenberg form, returning orthogonal Q and

upper Hessenberg H satisfying A = QTHQ. Your function should use Algo-

rithm ??. What happens when you compute the Hessenberg factorization of

a symmetric matrix?

