
Lab 8

Givens rotations and
Least squares

Lab Objective: Use Givens rotations to find the QR decomposition and use least

squares to fit curves to data.

In Lab 7, we found the QR decomposition of a matrix using Householder trans-

formations, applying a series of these transformations to a matrix until it was in

upper triangular form. We can use the same strategy to compute the QR decom-

position with rotations instead of reflections.

Givens rotations

Let us begin with Givens rotations in R2. An arbitrary vector x = (a, b)T can be

rotated into the span of e1 via an orthogonal transformation. In fact, the matrix

Tθ =

(
cos θ − sin θ

sin θ cos θ

)
rotates a vector counterclockwise by θ. Thus, if θ is the

clockwise-angle between x and e1, the vector T−θx will be in the span of e1. We

can find sin θ and cos θ with the formulas sin = opp
hyp and cos = adj

hyp , so sin θ = b√
a2+b2

and cos θ = a√
a2+b2

(see Figure8.1). Then

T−θx =

(
cos θ sin θ

− sin θ cos θ

)(
a

b

)
=

(
a√

a2+b2
b√

a2+b2

− b√
a2+b2

a√
a2+b2

)(
a

b

)
=

(√
a2 + b2

0

)
.

The matrix Tθ above is an example of a 2×2 Givens rotation matrix. In general,

the Givens matrix G(i, j, θ) represents the orthonormal transformation that rotates

the 2-dimensional span of ei and ej by θ radians. The matrix for this transformation

is

G(i, j, θ) =


I 0 0 0 0

0 c 0 −s 0

0 0 I 0 0

0 s 0 c 0

0 0 0 0 I

 .

This matrix is in block form with I representing the identity matrix, c = cos θ, and

s = sin θ. The c’s appear on the ith and jth diagonal entries.

89

90 Lab 8. Givens rotations and Least squares

a

b

θ

Figure 8.1: Rotating clockwise by θ will send the vector (a, b)T to the span of e1.

As before, we can choose θ so that G(i, j, θ) rotates a given vector so that its

ej-component is 0. Such a transformation will only affect the ith and jth entries of

any vector it acts on (and thus the ith and jth rows of any matrix it acts on).

This flexibility makes Givens rotations ideal for some problems. For example,

Givens rotations can be used to solve linear systems defined by sparse matrices by

modifying only small parts of the array. Also, Givens rotations can be used to solve

systems of equations in parallel.

The advantages of Givens rotations are that they orthonormal and hence nu-

merically stable (like Householder reflections), and they affect only a small part

of the array (like Gaussian elimination). The disadvantage is that they require a

greater number of floating point operations than Householder reflections. In prac-

tice, the Givens algorithm is slower than the Householder algorithm, even when

it is modified to decrease the number of floating point operations. However, since

Givens rotations can be parallelized, they can be much faster than the Householder

algorithm when multiple processors are used.

Givens triangularization

We can apply Givens rotations to a matrix until it is in upper triangular form,

producing a factorization A = QR where Q is a composition of Givens rotations

and R is upper triangular. This is exactly the QR decomposition of A.

The idea is to iterate through the subdiagonal entries of A in the order depicted

by Figure 8.2. We zero out the ijth entry with a rotation in the plane spanned by

ei−1 and ei. This rotation is just multiplication by the Givens matrix G(i− 1, i, θ),

which can be computed as in the example at the start of the previous section. We

just set a = ai−1,j and b = ai,j , so c = cos θ = a/
√
a2 + b2 and s = −b/

√
a2 + b2.

For example, on a 2× 3 matrix we may perform the following operations:

∗ ∗∗ ∗
∗ ∗

 G(2, 3, θ1)
−−−−−−−→

 ∗ ∗
∗ ∗
0 ∗

 G(1, 2, θ2)
−−−−−−−→

 ∗ ∗
0 ∗
0 ∗

 G(2, 3, θ3)
−−−−−−−→

∗ ∗0 ∗
0 0


At each stage, the boxed entries are those modified by the previous transformation.

The final transformation G(2, 3, θ3) operates on the bottom two rows, but since the

first two entries are zero, they are unaffected. Assuming that at the ijth stage of

the algorithm, aij is nonzero, Algorithm 8.1 computes the Givens triangularization

of a matrix..

91

1 2 3 4 5

Figure 8.2: This figure illustrates the order in which to zero out subdiagonal entries

in the Givens triangularization algorithm. The heavy black line is the main diagonal

of the matrix. Entries should be zeroed out from bottom to top in each column,

beginning with the leftmost column.

Algorithm 8.1 Givens Triangularization. Return an orthogonal matrix Q and

an upper triangular matrix R satisfying A = QR.

1: procedure Givens Triangularization(A)

2: R← copy(A)

3: Q← IA
4: G← empty((2, 2))

5: for 0 ≤ j < n do

6: for m ≥ i > j do

7: a, b← Ri−1,j , Ri,j
8: G← [[a, b], [−b, a]]/

√
a2 + b2

9: Ri−1:i+1,j: = GRi−1:i+1,j:

10: Qi−1:i+1,: = GQi−1:i+1,:

11: return QT , R

Notice that in Algorithm 8.1, we do not actually create the matrices G(i, j, θ)

and multiply them by the original matrix. Instead we modify only those entries of

the matrix that are affected by the transformation. As an additional way to save

memory, it is possible to modify this algorithm so that Q and R are stored in the

original matrix A.

Problem 1. Write a function that computes the Givens triangularization

of a matrix, using Algorithm 8.1. Assume that at the ijth stage of the

algorithm, aij will be nonzero.

92 Lab 8. Givens rotations and Least squares

Problem 2. Modify your solution to Problem 1 to compute the Givens tri-

angularization of an upper Hessenberg matrix, making the following changes:

1. Iterate through the first subdiagonal from left to right. (These are the

only entries that need to be zeroed out.)

2. Line 10 of Algorithm 8.1 updates Q with the current Givens rotation

G. Decrease the number of entries of Q that are modified in this

line. Do this by replacing Qi−1:i+1,: with Qi−1:i+1,:ki where ki is some

appropriately chosen number (dependent on i) such that Qi−1:i+1,ki: =

0.

Hint: Here is how to generate a random upper Hessenberg matrix on which

to test your function. The idea is to generate a random matrix and then zero

out all entries below the first subdiagonal.

import numpy as np

import scipy.linalg as la

from math import sqrt

A = np.random.rand(500, 500)

We do not need to modify the first row of A

la.triu(A[1:]) zeros out all entries below the diagonal of A[1:]

A[1:] = la.triu(A[1:])

A is now upper Hessenberg

Least Squares

A linear system Ax = b is overdetermined if it has no solutions. In this situation,

the least squares solution is a vector x̂ hat is “closest” to a solution. By definition,

x̂ is the vector such that Ax̂ will equal the projection of b onto the range of A. We

can compute x̂ by solving the Normal Equation AHAx̂ = AHb (see [TODO: ref

textbook] for a derivation of the Normal Equation).

Solving the normal equation

If A is full rank, we can use its QR decomposition to solve the normal equation. In

many applications, A is usually full rank, including when least squares is used to

fit curves to data.

Let A = QR be the QR decomposition of A, so R =

(
R0

0

)
where R0 is n×n,

nonsingular, and upper triangular. It can be shown that x̂ is the least squares

solution to Ax = b if and only if R0x̂ = (QT b)[:n]. Here, (QT b)[:n] refers to the first

n rows of QT b. Since R is upper triangular, we can solve this equation quickly with

back substitution.

93

displacement (cm) 1.04 2.03 2.95 3.92 5.06 6.00 7.07

load (dyne) 3.11 6.01 9.07 11.99 15.02 17.91 21.12

Problem 3. Write a function that accepts a matrix A and a vector b and

returns the least squares solution to Ax = b. Use the QR decomposition

as outlined above. Your function should use SciPy’s functions for QR de-

composition and for solving triangular systems, which are la.qr() and la.

solve_triangular(), respectively.

Using least squares to fit curves to data

The least squares solution can be used to find the curve of a chosen type that best

fits a set of points.

Example 1: Fitting a line

For example, suppose we wish to fit a general line y = mx + b to the data set

{(xk, yk)}nk=1. When we plug the constants (xk, yk) into the equation y = mx+b, we

get a system of linear equations in the unknowns m and b. This system corresponds

to the matrix equation 
x1 1

x2 1

x3 1
...

...

xn 1


(
m

b

)
=


y1

y2

y3

...

yn

 .

Because this system has two unknowns, it is guaranteed a solution if it has two or

fewer equations. In applications, there will usually be more than two data points,

and these will probably not lie in a straight line, due to measurement error. Then

the system will be overdetermined. The least squares solution to this equation will

be a slope m̂ and y-intercept b̂ that produce a line y = m̂x + b̂ which best fits our

data points.

Let us do an example with some actual data. Imagine we place different loads

on a spring and measure the displacement, recording our results in the table below.

Hooke’s law from physics says that the displacement x should be proportional

to the load F , or F = kx for some constant k. The equation F = kx describes a line

with slope k and F -intercept 0. So the setup is similar to the setup for the general

line we discussed above, except we already know b = 0 When we plug our seven

data points (x, F) pairs into the equation F = kx, we get seven linear equations in

94 Lab 8. Givens rotations and Least squares

k, corresponding to the matrix equation



1.04

2.03

2.95

3.92

5.06

6.00

7.07


(
k
)

=



3.11

6.01

9.07

11.99

15.02

17.91

21.12


.

We expect such a linear system to be overdetermined, and in fact it is: the equation

is 1.04k = 3.11 which implies k = 2.99, but the second equation is 2.03k = 6.01

which implies k = 2.96.

We can’t solve this system, but its least squares solution is a “best” choice for

k. We can find the least squares solution with the SciPy function linalg.lstlsq().

This function returns a tuple of several values, the first of which is the least squares

solution.

>>> A = np.vstack([1.04,2.03,2.95,3.92,5.06,6.00,7.07])

>>> b = np.vstack([3.11,6.01,9.07,11.99,15.02,17.91,21.12])

>>> k = la.lstsq(A, b)[0]

>>> k

array([[2.99568294]])

Hence, to two decimal places, k = 3.00. We plot the data against the best-fit line

with the following code, whose output is in Figure 8.3

>>> from matplotlib import pyplot as plt

>>> x0 = np.linspace(0,8,100)

>>> y0 = k[0]*x0

>>> plt.plot(A,b,'*',x0,y0)
>>> plt.show()

Problem 4. Load the linepts array from the file data.npz. The following

code stores this array as linepts.

linepts = np.load('data.npz')['linepts']

The linepts array has two columns corresponding to the x and y coordinates

of some data points.

1. Use least squares to fit the line y = mx+ b to the data.

2. Plot the data and your line on the same graph.

95

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

Figure 8.3: The graph of the spring data together with its linear fit.

Example 2: Fitting a circle

Now suppose we wish to fit a general circle to a data set {(xk, yk)}nk=1. Recall that

the equation of a circle with radius r and center (c1, c2) is

(x− c1)2 + (y − c2)2 = r2. (8.1)

What happens when we plug a data point into this equation? Suppose (xk, yk) =

(1, 2). 1 Then

5 = 2c1 + 4c2 + (r2 − c21 − c22).

To find c1, c2, and r with least squares, we need linear equations. Then Equation

8 above is not linear because of the r2, c21, and c22 terms. We can do a trick to make

this equation linear: create a new variable c3 defined by c3 = r2 − c21 − c22. Then

Equation 8 becomes

5 = 2c1 + 4c2 + c3,

which is linear in c1, c2, and c3. Since r2 = c3 + c21 + c22, after solving for the new

variable c3 we can also find r.

For a general data point (xk, yk), we get the linear equation

2c1xk + 2c2yk + c3 = x2
k + y2

k.

1You don’t have to plug in a point for this derivation, but it helps us remember which symbols
are constants and which are variables.

96 Lab 8. Givens rotations and Least squares

x 134 104 34 -36 -66 -36 34 104 134

y 76 146 176 146 76 5 -24 5 76

Thus, we can find the best-fit circle from the least squares solution to the matrix

equation 
2x1 2y1 1

2x2 2y2 1
...

...
...

2xn 2yn 1


c1c2
c3

 =


x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n

 . (8.2)

If the least squares solution is ĉ1, ĉ2, ĉ3, then the best-fit circle is

(x− ĉ1)2 + (y − ĉ2)2 = ĉ3 + ĉ1
2 + ĉ2

2.

Let us use least squares to find the circle that best fits the following nine points:

We enter them into Python as a 9× 2 array.

>>> P = np.array([[134,76],[104,146],[34,176],[-36,146],

[-66,76],[-36,5],[34,-24],[104,5],[134,76]])

We compute A and b according to Equation 8.2.

>>> A = np.hstack((2*P, np.ones((9,1))))

>>> b = (P**2).sum(axis=1)

Then we use SciPy to find the least squares solution.

>>> c1, c2, c3 = la.lstsq(A, b)[0]

We can solve for r using the relation r2 = c3 + c21 + c22.

>>> r = sqrt(c1**2 + c2**2 + c3)

A good way to plot a circle is to use polar coordinates. Using the same variables

as before, the equation for a general circle is x = r cos(θ) + c1 and y = r sin(θ) + c2.

With the following code we plot the data points and our best-fit circle using polar

coordinates. The resulting image is Figure 8.4.

In the polar equations for a circle, theta goes from 0 to 2*pi.

>>> theta = np.linspace(0,2*np.pi,200)

>>> plt.plot(r*np.cos(theta)+c1,r*np.sin(theta)+c2,'-',P[:,0],P[:,1],'*')
>>> plt.show()

Problem 5.

1. Load the ellipsepts array from data.npz. This array has two columns

corresponding to the x and y coordinates of some data points.

97

100 50 0 50 100 150
50

0

50

100

150

200

Figure 8.4: The graph of the some data and its best-fit circle.

2. Use least squares to fit an ellipse to the data. The general equation for

an ellipse is

ax2 + bx+ cxy + dy + ey2 = 1.

You should get 0.087, −0.141, 0.159, −0.316, 0.366 for a, b, c, d, and e

respectively.

